1. bookVolume 13 (2013): Issue 3 (July 2013)
Journal Details
License
Format
Journal
eISSN
2300-8733
ISSN
1642-3402
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Relationship Between Glycolytic Potential and Meat Quality of Duroc Pigs with Consideration of Carcass Chilling System / Związek potencjału glikolitycznego z cechami jakości mięsa tuczników rasy Duroc, z uwzględnieniem systemu chłodzenia tusz

Journal Details
License
Format
Journal
eISSN
2300-8733
ISSN
1642-3402
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The objective of this study was to determine phenotypic relations between glycolytic potential (GP) measured 45 min postmortem and meat quality traits of stress-resistant fatteners, with consideration of carcass chilling system. The investigations involved 35 Duroc fattening pigs whose left halfcarcasses were chilled conventionally (4ºC for 24 h) and right half-carcasses were rapidly chilled in a three-phase chilling tunnel (-10ºC for 15 min, -15ºC for 25 min and -5ºC for 40 min with air velocity of 3 m/s). In this study we showed that rapid chilling significantly slows the rate of pH fall from 2 to 96 h after slaughter. The negative relationship between glycolytic potential and pH (especially 24 h postmortem) was stronger for conventionally chilled carcasses but the regression coefficient (b) does not suggest increased rate of pH fall in meat of conventionally chilled carcasses (especially compared to rapid chilling) at the later stages of conversion of muscle to meat (from 24 to 144 h after slaughter). In this investigation GP was positively correlated to drip loss at 48 h postmortem, and a stronger correlation was noted for rapidly chilled carcasses. Moreover, the regression coefficient indicates that rapid chilling to 48 h postmortem can cause a slightly higher drip loss from meat than when the carcasses are chilled conventionally (0.55 vs. 0.46 percentage points per 10 μmol/g GP). At the later stages of conversion of muscle to meat (96 and 144 h postmortem) the correlation and regression coefficients were the same regardless of the chilling system.

Keywords

Bergmeyer H.U. (1974). Methods of enzymatic analysis. Academic Press, New York, USA.Search in Google Scholar

Bertram H.C., Donstrup S., Karlsson A.H., Andersen H.J., Stodkilde- Jor-gensen H. (2001). Post mortem energy metabolism and p Hdevelopment in porcine M. longissimusdorsi as affected by two different cooling regimes. A 31P-NMRspectroscopic study. MRI, 19: 993-1000.10.1016/S0730-725X(01)00412-XOpen DOISearch in Google Scholar

Darymple R.H., Hamm R. (1973). Amethod for the extraction of glycogen and metabolites fromasingle muscle sample. J. Food Tech., 8: 439-444.Search in Google Scholar

Fujii J., Otsu K., Zorzato F.,de Leon S., Khanna S., Weiler V.K., O ’ Brien P.J., Maclennan D.H. (1991). Identification ofamutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 253: 448-451.Search in Google Scholar

Grau R., Hamm R. (1952). Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft, 4: 295-297.Search in Google Scholar

Greaser M.L. (1986). Conversion of muscle to meat. In: Muscle asa Food, Bechtel P.J. (ed.). Academic Press Inc., Orlando, USA, pp. 37-102.10.1016/B978-0-12-084190-5.50007-2Search in Google Scholar

Hamilton D.N., Miller K.D., Ellis M., Mckeith F.K., Wilson E.R. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci., 81: 2206-2212.Search in Google Scholar

Henckel P., Karlsson A., Jensen M.T., Oksbjerg N., Petersen J.S. (2002). Metabolic conditions in porcine longissimus muscle immediately pre-slaughter and its influence on peri- and post mortem energy metabolism. Meat Sci., 62: 145-155.2206140610.1016/S0309-1740(01)00239-XSearch in Google Scholar

Honikel K.O. (2004). Water-holding capacity of meat. In: Muscle development of livestock animals: physiology, genetics and meat quality, te Pas M.F.W., Everts M.E., Haagsman H.P. (eds). CABI Publishing, pp. 389-400.10.1079/9780851998114.0389Search in Google Scholar

Huff - Lonergan E., Baas T.J., Malek M., Dekkers J.C.M., Prusa K., Rothschild M.F. (2002). Correlations among selected pork quality traits. J. Anim. Sci. 80: 617-627.Search in Google Scholar

Huff - Lonergan E., Lonergan S.M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci., 71: 194-204.Search in Google Scholar

Josell A.,von Seth G., Tornberg E. (2003). Sensory and meat quality traits of pork in relation to post-slaughter treatment and RNgenotype. Meat Sci., 66: 113-124.Search in Google Scholar

Kawasaki E.S. (1990). Sample preparation from blood cells and other fluids. In: PCRprotocols: Aguide to methods and applications, Innis M. A., Gelfamd D. H., Sninsky J. J. White T. J. (eds)., Academic Press, New York London, UK, pp. 146-152.10.1016/B978-0-12-372180-8.50022-6Search in Google Scholar

Kerth C.R., Carr M.A., Ramsey C.B., Brooks J.C., Johnson R.C., Cannon J.E., Mil-ler M.F. (2001). Vitamin-mineral supplementation and accelerated chilling effects on quality of pork from pigs that are monomutant or noncarriers of the halothane gene. J. Anim. Sci., 79: 2346-2355.Search in Google Scholar

Koćwin - Podsiadła M., Zybert A., Antosik K., Podsiadły W., Sieczkowska H., Krzęcio E. (2009). Glycogen content and the rate of glycolytic changes as the indicator of pork meat quality. Proc. 55th International Congress on Meat Science and Technology, Copenhagen, Denmark,16-21.08.2009, PE1.46.Search in Google Scholar

van Laack R.L.J.M. (2001). Metabolic factors influencing ultimate p H. Proc. 54th Reciprocal Meat Conference, Indianapolis, USA, 24-28.07.2001, pp. 158-160.Search in Google Scholar

van Laack R.L.J.M., Kauffman R.G. (1999). Glycolytic potential of red, soft, exudative pork longissimus muscle. J. Anim. Sci., 77: 2971-2973.Search in Google Scholar

Meadus W.J., Macinnis R. (2000). Testing for the RN- gene in retail pork chops. Meat Sci., 54: 231-237.2206069310.1016/S0309-1740(99)00084-4Search in Google Scholar

Monin G., Sellier P. (1985). Pork of low technological quality withanormal rate of muscle p Hfall in the immediate post-mortem period: The case of the Hampshire breed. Meat Sci., 13: 49-63.Search in Google Scholar

Offer G. (1991). Modelling of the formation of pale, soft and exudative meat: effect of chilling regime and rate and extent of glycolysis. Meat Sci., 30: 157-184.Search in Google Scholar

Oksbjerg N., Henckel P., Andersen S., Pedersen B. Nielsen B. (2004). Genetic variation of in vivo muscle glycerol, glycogen, and pigment in Danish purebred pigs. Acta Agric. Scand., Sect. A, Animal. Sci., 54: 187-192.Search in Google Scholar

Pohja N.S., Ninivaara F.P. (1957). Die Bestimmung der Wasserbindung des Fleisches mittels der Konstantdrückmethode. Fleischwirtschaft, 9: 193-195.Search in Google Scholar

Pösö A.R., Puolanne E. (2005). Carbohydrate metabolism in meat animals. Meat Sci., 70: 423-434.2206374210.1016/j.meatsci.2004.12.017Search in Google Scholar

Prange H., Jugert L., Scharner E. (1977). Untersuchungen zur Muskelfleischqualität beim Schwein. Arch. Exper. Veterinarmed. Leipzig, 31, 2: 235-248.Search in Google Scholar

Przybylski W., Vernin P., Monin G. (1994). Relationship between glycolytic potential and ultimate p Hin bovine, porcine and ovine muscles. J. Muscle Foods, 5: 245-255.Search in Google Scholar

Purslow P.P., Schäfer A., Kristensen L., Bertram H.C, Rosenvold K., Henckel P.R., Andersen H.J., Knight P.J., Wess T.J., Støier S., Aaslyng M. (2001). Water-holding of pork: Understanding the mechanisms. Proc. 54th Reciprocal Meat Conference, Indianapolis, USA, 24-28.07.2001, pp. 134-142.Search in Google Scholar

Rosenvold K., Petersen J.S., Lwerke H.N., Jensen S.K., Therkildsen M., Karls-son A.H., Møller H.S., Andersen H.J. (2001). Muscle glycogen stores and meat quality as affected by strategic finishing feeding of slaughter pigs. J. Anim. Sci., 79: 382-391.Search in Google Scholar

Savell J.W., Mueller S.L., Baird B.E. (2005). The chilling of carcasses. Meat Sci., 70: 449-459.2206374410.1016/j.meatsci.2004.06.027Search in Google Scholar

Schäfer A., Rosenvold K., Purslow P.P., Andersen H.J., Henckel P.R. (2002). Physiological and structural events post mortem of importance for drip loss in pork. Meat Sci., 61: 355-366.2206106310.1016/S0309-1740(01)00205-4Search in Google Scholar

Zybert A., Krzęcio E., Sieczkowska H., Antosik K., Podsiadły W., Koćwin - - Podsiadła M. (2008). Association between glycolytic potential and selected physico-chemical and functional characteristics of longissimus lumborum muscle tissue with regard to carcass chilling system (in Polish). Rocz. Nauk. PTZ, 4 (3): 301-309.Search in Google Scholar

Zybert A., Krzęcio E., Sieczkowska H., Podsiadły W., Przybylski W. (2007). The influence of chilling method on glycolytic changes and pork meat quality. Proc. 53rd International Congress of Meat Science and Technology, Beijing, China, 5-10.08.2007, pp. 293-294.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo