1. bookVolume 68 (2022): Issue 1 (April 2022)
Journal Details
License
Format
Journal
eISSN
1338-4376
First Published
06 Jun 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Development of a Simple Empirical Yield Predition Model Based on Dry Matter Production in Sweet Pepper

Published Online: 12 Aug 2022
Volume & Issue: Volume 68 (2022) - Issue 1 (April 2022)
Page range: 13 - 24
Received: 17 Mar 2022
Accepted: 24 Jun 2022
Journal Details
License
Format
Journal
eISSN
1338-4376
First Published
06 Jun 2011
Publication timeframe
4 times per year
Languages
English

Ahn, D-H., Higashide, T., Iwasaki, Y., Kawasaki, Y., and Nakano, A. (2015). Estimation of leaf area index of cucumbers (Cucumis sativus L.) trained on a high-wire. Bulletin of the National Institute of Vegetable and Tea Science, 14, 23 – 29. Search in Google Scholar

Al-Halimi, R. and Moussa, M.A. (2015). Long-term yield prediction of greenhouse sweet pepper crops. GSTF Journal on Agricultural Engineering (JAE), 2(1), 7 – 12. doi:10.5176/2345-7848_2.1.11. Open DOISearch in Google Scholar

Aloni, B., Karni, L., Zaidman, Z., and Schaffer, A.A. (1996). Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Annals of Botany, 78(2), 163 – 168. doi:10.1006/anbo.1996.0109. Open DOISearch in Google Scholar

Charlo, H.C.O., Oliveira S.F., Castoldi, R., Vargas, P.F., Braz, L.T., and Barbosa, J.C. (2011). Growth analysis of sweet pepper cultivated in coconut fiber in a greenhouse. Horticultura Brasileira, 29(3), 316 – 323. doi:10.1590/S0102-05362011000300010. Open DOISearch in Google Scholar

Cho, Y.Y., Oh, S., Oh, M.M. and Son, J.E. (2007). Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae, 111(4), 330 – 334. doi:10.1016/j.scienta.2006.12.028. Open DOISearch in Google Scholar

Cruz-Huerta, N., Williamson, J.G., and Darnell, R.L. (2011). Low night temperature increases ovary size in sweet pepper cultivars. HortScience, 46(3), 396 – 401. doi:10.21273/HORTSCI.46.3.396. Open DOISearch in Google Scholar

Fan, X-X., Xu, Z-G., Liu, X-Y., Tang, C-M., Wang, L-W., and Han, X-L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scienta Horticulturae, 153(4), 50 – 55. doi:10.1016/j.scienta.2013.01.017. Open DOISearch in Google Scholar

Heuvelink, E. (1999). Evaluation of a dynamic simulation model for tomato crop growth and development. Annals of Botany, 83(4), 413 – 422. doi:10.1006/ANBO.1998.0832. Open DOISearch in Google Scholar

Heuvelink, E. and Kierkels, T. (2015). Energy saving: plant offers many possibilities. In Heuvelink, E. and Kierkels, T. (Eds.). Plant physiology in greenhouse. Woerden: Horti- Text BV, pp. 82 – 83. Search in Google Scholar

Heuvelink, E. and Körner, O. (2001). Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Annals of Botany, 88(1), 69 – 74. doi: 10.1006/anbo.2001.1427. Open DOISearch in Google Scholar

Higashide, T. (2015). Factors pertaining to dry matter production in tomato plants. In Higashide, T. (Ed.). Solanum lycopersicum: production, biochemistry and health benefits. New York: Nova Science Publishers, pp. 1 – 23. Search in Google Scholar

Higashide, T. and Heuvelink, E. (2009). Physiological and morphological changes over the past 50 years in yield components in tomato. Journal of the American Society Horticultural Science, 134(4), 460 – 465. doi:10.21273/JASHS.134.4.460. Open DOISearch in Google Scholar

Higashide, T., Yasuba, K., Suzuki, K., Nakano, A., and Ohmori, H. (2012). Yield of Japanese tomato cultivars has been hampered by a breeding focus on flavor. HortScience, 47(10), 1408 – 1411. doi:10.21273/HORTSCI.47.10.1408. Open DOISearch in Google Scholar

Hurewitz, J. and Janes, H.W. (1983). Effect of altering the root-zone temperature on growth, translocation, carbon exchange rate, and leaf starch accumulation in the tomato. Plant Physiology, 73(1), 46 – 50. doi:10.1104/pp.73.1.46.106640416663183 Open DOISearch in Google Scholar

Jones, J.W., Dayan, E., Allen, L.H., van Keulen, H., and Challa, H. (1991). A dynamic tomato growth and yield model (TOMGRO). Transaction of the ASAE, 34(2), 663 – 672. doi:10.13031/2013.31715. Open DOISearch in Google Scholar

Kafkafi, U. (2006). Functions of the root system. In Raviv, M. and Lieth, J.H. (Eds.). Soilless culture: theory and practice. Amsterdam: Elsevier B.V., pp. 13 – 40. Search in Google Scholar

Kaiser, E., Matsubara, S., Harbinson, J., Heuvelink, E., and Marcelis, L.F. M. (2017). Acclimation of photosynthesis to lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. Physiologia Plantarum, 162(4), 506 – 517. doi:10.1111/PPL.12668. Open DOISearch in Google Scholar

Kleinendorst, A. and Veen, B. (1983). Responses of young cucumber plants to root and shoot temperatures. Netherlands Journal of Agricultural Sciences, 31(1), 47 – 61. doi: 10.18174/njas.v31i1.16961. Open DOISearch in Google Scholar

Lee, J., Moon, T., Nam, D.S., Park, K.S., and Son, J.E. (2018). Estimation of leaf area in paprika based on leaf length, leaf width, and node number using regression models and an artificial neural network. Horticultural Science and Technology, 36(2), 183 – 192. doi:10.12972/KJHST.20180019. Open DOISearch in Google Scholar

Lin, W-C., Frey, D., Nigh, G.D., and Ying, C.C. (2009). Combined analysis to characterize yield pattern of greenhouse- grown red sweet peppers. HortScience, 44(2), 362 – 365. doi:10.21273/HORTSCI.44.2.362. Open DOISearch in Google Scholar

Lin, W-C. and Hill, B.D. (2008). Neural network modelling to predict weekly yields of sweet peppers in a commercial greenhouse. Canadian Journal of Plant Science, 88(3), 531 – 536. doi:10.4141/cjps07165. Open DOISearch in Google Scholar

Marcelis, L.F.M. and Baan Hofman-Eijer, L.R. (1997). Effects of seed number on competition and dominance among fruits in Capsicum annuum L. Annals of Botany, 79(6), 687 – 693. doi:10.1006/anbo.1997.0398. Open DOISearch in Google Scholar

Monsi, M. and Saeki, T. (2005). On the factor light in plant communities and its importance for matter production. Annals of Botany, 95(3), 549 – 567. doi:10.1093/aob/mci052. (Originally published as: Über den lichtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduction. Japanese Journal of Botany, 14, 22 – 52).424679915661751 Open DOISearch in Google Scholar

Ohtani, Y. (1997). Effective radiation, micrometeorological phenomena. In Maki, T., Iwata, S., Uchijima, Z., Oikawa, T., Omasa, K., Kurata, K., Kozai, T., Goto, E., Kon, E. H., Nouchi, I., Harazono, Y., Hoshi, T., Honjo, H. and Yamakawa, S. (Eds.). Agricultural meteorology glossary (In Japanese). Tokyo: Society for Agricultural Meteorology of Japan, pp. 106 – 107. Search in Google Scholar

Padrón, R.A.R., Lopes, S.J., Swarowsky, A., Cerquera, R. R., Nogueira, C.U., and Maffei, M. (2016). Non-destructive models to estimate leaf area on bell pepper crop. Ciência Rural, 46(11), 1938 – 1944. doi:10.1590/0103-8478cr20151324. Open DOISearch in Google Scholar

Saito, T., Kawasaki, Y., Ahn, D-H., Ohyama, A., and Higashide, T. (2020a). Prediction and improvement of yield and dry matter production based on modeling and non-destructive measurement in year-round greenhouse tomatoes. The Horticulture Journal, 89(4), 425 – 431. doi:10.2503/hortj.UTD-170. Open DOISearch in Google Scholar

Saito, T., Mochizuki, Y., Kawasaki, Y., Ohyama, A., and Higashide, T. (2020b). Estimation of leaf area and light-use efficiency by non-destructive measurements for growth modeling and recommended leaf area index in greenhouse tomatoes. The Horticulture Journal, 89(4), 445 – 453. doi: 10.2503/hortj.UTD-171. Open DOISearch in Google Scholar

Vanthoor, B.H.E., de Visser, P.H.B., Stanghellini, C., and van Henten, E.J. (2011). A methodology for model-based greenhouse design: part 2, description and validation of a tomato yield model. Biosystems Engineering, 110(4), 378 – 395. doi:10.1016/j.biosystemseng.2011.08.005. Open DOISearch in Google Scholar

Watabe, T., Homma, M., Ahn, D-H., and Higashide, T. (2021). Examination of yield components and the relationship be tween dry matter production and fruit yield in greenhouse sweet pepper (Capsicum annuum). The Horticulture Journal, 90(3), 247 – 254. doi:10.2503/hortj.UTD-263. Open DOISearch in Google Scholar

Winsor, C.P. (1932). The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences of the United States of America, 18(1), 1 – 8. doi:10.1073/pnas.18.1.1.107615316577417 Open DOISearch in Google Scholar

Wubs, M.A., Ma, Y., Heuvelink, E., and Marcelis, L.F.M. (2009). Genetic differences in fruit-set patterns are determined by differences in fruit sink strength and a source: sink threshold for fruit set. Annals of Botany, 104(5), 957 – 964. doi: 10.1093/aob/mcp181.274952719643909 Open DOISearch in Google Scholar

Yasuba, K., Hoshi, T., Kaneko, S., Higashide, T., Omori, H., and Nakano, A. (2013). Establishment of an environmental measurement node using open source hardware. Agricultural Information Research (Japan), 22(4), 247 – 255 (In Japanese with English abstract). doi:10.3173/air.22.247. Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo