[
1. J. K. Anninga, H. Gelderblom, M. Fiocco, J. R. Kroep, A. H. Taminiau, P. C. Hogendoorn and R. M. Egeler, Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand?, Eur. J. Cancer 47(16) (2011) 2431–2445; https://doi.org/10.1016/j.ejca.2011.05.03010.1016/j.ejca.2011.05.03021703851
]Search in Google Scholar
[
2. C. P. Gibbs, P. P. Levings and S. C. Ghivizzani, Evidence for the osteosarcoma stem cell, Current Orthopaedic Practice 22(4) (2011) 322–326; https://doi.org/10.1097/BCO.0b013e318221aee810.1097/BCO.0b013e318221aee8313251521755019
]Search in Google Scholar
[
3. D. Nassar and C. Blanpain, Cancer stem cells: Basic concepts and therapeutic implications, Annu. Rev. Pathol. 23(11) (2016) 47–76; https://doi.org/10.1146/annurev-pathol-012615-04443810.1146/annurev-pathol-012615-04443827193450
]Search in Google Scholar
[
4. M. Jang, S. S. Kim and J. Lee, Cancer cell metabolism: implications for therapeutic targets, Exp. Mol. Med. 45(10) (2013) Article ID 201385 (8 pages); https://doi.org/10.1038/emm.2013.8510.1038/emm.2013.85380936124091747
]Search in Google Scholar
[
5. M. G. Vander Heiden, L. C. Cantley and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science 324(5930) (2009) 1029–1033; https://doi.org/10.1126/science.116080910.1126/science.1160809284963719460998
]Search in Google Scholar
[
6. H. Kondoh, M. E. Lleonart, D. Bernard and J. Gil, Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization, Histol. Histopathol. 22(1) (2007) 85–90; https://doi.org/10.14670/HH-22.85
]Search in Google Scholar
[
7. C. D. Folmes, T. J. Nelson, A. Martinez-Fernandez, D. K. Arrell, J. Z. Lindor, P. P. Dzeja, Y. Ikeda, C. Perez-Terzic and A. Terzic, Somatic oxidative bioenergetics transitions into pluripotency dependent glycolysis to facilitate nuclear reprogramming, Cell. Metab. 14(2) (2011) 264–271; https://doi.org/10.1016/j.cmet.2011.06.01110.1016/j.cmet.2011.06.011315613821803296
]Search in Google Scholar
[
8. G. Farnie, F. Sotgia and M. P. Lisanti, High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant, Oncotarget 6(31) (2015) 30472–30486; https://doi.org/10.18632/oncotarget.540110.18632/oncotarget.5401474154526421710
]Search in Google Scholar
[
9. A. De Luca, M. Fiorillo, M. Peiris-Pagès, B. Ozsvari, D. L. Smith, R. Sanchez-Alvarez, U. E. Martinez-Outschoorn, A. R. Cappello, V. Pezzi, M. P. Lisanti and F. Sotgia, Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells, Oncotarget 6(17) (2015) 14777–14795; https://doi.org/10.18632/oncotarget.440110.18632/oncotarget.4401455811526087310
]Search in Google Scholar
[
10. P. Sancho, D. Barneda and C. Heeschen, Hallmarks of cancer stem cell metabolism, Br. J. Cancer 114(12) (2016) 1305–1312; https://doi.org/10.1038/bjc.2016.15210.1038/bjc.2016.152498447427219018
]Search in Google Scholar
[
11. V. Snyder, T. C. Reed-Newman, L. Arnold, S. M. Thomas and S. Anant, Cancer stem cell metabolism and potential therapeutic targets, Front. Oncol. 203(8) (2018) Article ID e203 (9 pages); https://doi.org/10.3389/fonc.2018.0020310.3389/fonc.2018.00203599605829922594
]Search in Google Scholar
[
12. J. He, L. Xiong, Q. Li, L. Lin, X. Miao, S. Yan, Z. Hong, L. Yang, Y. Wen and X. Deng, 3D modeling of cancer stem cell niche, Oncotarget 9(1) (2017) 1326–1345; https://doi.org/10.18632/oncotarget.1984710.18632/oncotarget.19847578744229416698
]Search in Google Scholar
[
13. S. Park, S. Ahn, Y. Shin, Y. Yang and C. H. Yeom, Vitamin C in cancer: A metabolomics perspective, Front. Physiol. 762(9) (2018) Article ID e762 (9 pages); https://doi.org/10.3389/fphys.2018.0076210.3389/fphys.2018.00762601839729971019
]Search in Google Scholar
[
14. N. J. Satheesh, S. M. Samuel and D. Büsselberg, Combination therapy with vitamin C could eradicate cancer stem cells, Biomolecules 10(1) (2020) Article ID 1000079 (20 pages); https://doi.org/10.3390/biom1001007910.3390/biom10010079702245631947879
]Search in Google Scholar
[
15. M. T. Valenti, M. Zanatta, L. Donatelli, G. Viviano, C. Cavallini, M. T. Scupoli and L. Dalle Carbonare, Ascorbic acid induces either differentiation or apoptosis in MG-63 osteosarcoma lineage, Anticancer Res. 34(4) (2014) 1617–1627.
]Search in Google Scholar
[
16. G. Fernandes, A. W. Barone and R. Dziak, The effect of ascorbic acid on bone cancer cells in vitro, Cogent Biol. 3(1) (2017) Article ID 1288335 (12 pages); https://doi.org/10.1080/23312025.2017.128833510.1080/23312025.2017.1288335
]Search in Google Scholar
[
17. S. J. Lee, J. H. Jeong, I. H. Lee, J. Lee, J. H. Jung, H. Y. Park, D. H. Lee and Y. S. Chae, Effect of high-dose vitamin C combined with anti-cancer treatment on breast cancer cells, Anticancer Res. 39(2) (2019) 751–758; https://doi.org/10.21873/anticanres.1317210.21873/anticanres.1317230711954
]Search in Google Scholar
[
18. J. Kaźmierczak-Barańska, K. Boguszewska, A. Adamus-Grabicka and B. T. Karwowski, Two faces of vitamin C – antioxidative and pro-oxidative agent, Nutrients 12(5) (2020) Article ID1201501 (19 pages); https://doi.org/10.3390/nu1205150110.3390/nu12051501728514732455696
]Search in Google Scholar
[
19. K. F. Hung, T. Yang and S. Y. Kao, Cancer stem cell theory: Are we moving past the mist?, J. Chin. Med. Assoc. 82(11) (2019) 814–818; https://doi.org/10.1097/JCMA.000000000000018610.1097/JCMA.000000000000018631469690
]Search in Google Scholar
[
20. Z. Zhong, S. Mao, H. Lin, H. Li, J. Lin and J. M. Lin, Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry, Talanta 204 (2019) 6–12; https://doi.org/10.1016/j.talanta.2019.05.08810.1016/j.talanta.2019.05.08831357340
]Search in Google Scholar
[
21. E. Mizushima, T. Tsukahara, M. Emori, K. Murata, A. Akamatsu, Y. Shibayama, S. Hamada, Y. Watanabe, M. Kaya, Y. Hirohashi, T. Kanaseki, M. Nakatsugawa, T. Kubo, T. Yamashita, N. Sato and T. Torigoe, Osteosarcoma-initiating cells show high aerobic glycolysis and attenuation of oxidative phosphorylation mediated by LIN28B, Cancer science 111(1) (2020) 36–46; https://doi.org/10.1111/cas.1422910.1111/cas.14229694242931705593
]Search in Google Scholar
[
22. G. Palmini, R. Zonefrati, C. Mavilia, A. Aldinucci, E. Luzi, F. Marini, A. Franchi, R. Capanna, A. Tanini and M. L. Brandi, Establishment of cancer stem cell cultures from human conventional osteosarcoma, J. Vis. Exp. 116 (2016) Article ID e53884 (17 pages); https://doi.org/10.3791/5388410.3791/53884509219727768062
]Search in Google Scholar
[
23. S. H. Bae, H. Ryu, K. J. Rhee, J. E. Oh, S. K. Baik, K. Y. Shim, J. H. Kong, S. Y. Hyun, H. S. Pack, C. Im, H. C. Shin, Y.M. Kim, H. S. Kim, Y. W. Eom and J. I. Lee, L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor, Growth Factors 33(2) (2015) 71–78; https://doi.org/10.3109/08977194.2015.101362810.3109/08977194.2015.101362825714612
]Search in Google Scholar