1. bookVolume 72 (2022): Issue 1 (March 2022)
Journal Details
First Published
28 Feb 2007
Publication timeframe
4 times per year
access type Open Access

Application of neurotoxin- and pesticide-induced animal models of Parkinson’s disease in the evaluation of new drug delivery systems

Published Online: 30 Aug 2021
Page range: 35 - 58
Accepted: 13 Jan 2021
Journal Details
First Published
28 Feb 2007
Publication timeframe
4 times per year

Parkinson’s disease (PD) is the second most prevalent neuro-degenerative disease after Alzheimer´s disease. It is characterized by motor symptoms such as akinesia, bradykinesia, tremor, rigidity, and postural abnormalities, due to the loss of nigral dopaminergic neurons and a decrease in the dopa-mine contents of the caudate-putamen structures. To this date, there is no cure for the disease and available treatments are aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In the past decades, animal models of PD have been proven to be valuable tools in elucidating the nature of the pathogenic processes involved in the disease, and in designing new pharmacological approaches. Here, we review the use of neurotoxin-induced and pesticide-induced animal models of PD, specifically those induced by rotenone, paraquat, maneb, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-OHDA (6-hydroxydopamine), and their application in the development of new drug delivery systems for PD.


1. J. M. Beitz, Parkinson´s disease a review, Front. Biosci. 6 (2014) 65–74; https://doi.org/10.2741/S415 Search in Google Scholar

2. D. M. Radhakrishnan and V. Goyal, Parkinson’s disease: A review, Neurol. India 66 (2018) 26–35; https://doi.org/10.4103/0028-3886.226451 Search in Google Scholar

3. L. V. Kalia and A. E. Lang, Parkinson’s disease, Lancet 386 (2015) 896–912; https://doi.org/10.1016/S0140-6736(14)61393-3 Search in Google Scholar

4. F. J. Carod-Artal, H. M. Mesquita, S. Ziomkowski and P. Martinez-Martin, Burden and health-related quality of life among caregivers of Brazilian Parkinson’s disease patients, Park. Relat. Disord. 19 (2013) 943–948; https://doi.org/10.1016/j.parkreldis.2013.06.005 Search in Google Scholar

5. N. L. G. del Rey, A. Quiroga-Varela, E. Garbayo, I. Carballo-Carbajal, R. Fernández-Santiago, M. H. G. Monje, I. Trigo-Damas, M. J. Blanco-Prieto and J. Blesa, Advances in Parkinson’s disease: 200 years later, Front. Neuroanat. 12 (2018) Article ID 113 (14 pages); https://doi.org/10.3389/fnana.2018.00113 Search in Google Scholar

6. K. A. Jellinger, Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis, Neurology 87 (2016) 237–238; https://doi.org/10.1212/WNL.0000000000002876 Search in Google Scholar

7. A. Iranzo, E. Tolosa, E. Gelpi, J. L. Molinuevo, F. Valldeoriola, M. Serradell, R. Sanchez-Valle, I. Vilaseca, F. Lomeña, D. Vilas, A. LLadó, C. Gaig and J. Santamaria, Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An observational cohort study, Lancet Neurol. 12 (2013) 443–453; https://doi.org/10.1016/S1474-4422(13)70056-5 Search in Google Scholar

8. J. M. Miyasaki, W. Martin, O. Suchowersky, W. J. Weiner and A. E. Lang, Practice parameter: Initiation of treatment for Parkinson’s disease: An evidence-based review: Report of the quality standards subcommittee of the American Academy of Neurology, Neurology 58 (2002) 11–17; https://doi.org/10.1212/WNL.58.1.11 Search in Google Scholar

9. K. Seppi, D. Weintraub, M. Coelho, S. Perez-Lloret, S. H. Fox, R. Katzenschlager, E. M. Hametner, W. Poewe, O. Rascol, C. G. Goetz and C. Sampaio, The Movement Disorder Society disease evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s, Mov. Disord. 26 (2011) 42–80; https://doi.org/10.1002/mds.23884 Search in Google Scholar

10. B. S. Connolly and A. E. Lang, Pharmacological treatment of Parkinson disease: A review, JAMA 311 (2014) 1670–1683; https://doi.org/10.1001/jama.2014.3654 Search in Google Scholar

11. J. M. Hatcher, K. D. Pennell and G. W. Miller, Parkinson’s disease and pesticides: a toxicological perspective, Trends Pharmacol. Sci. 29 (2008) 322–329; https://doi.org/10.1016/j.tips.2008.03.007 Search in Google Scholar

12. M. Van der Mark, M. Brouwer, H. Kromhout, P. Nijssen, A. Huss and R. Vermeulen, Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results, Environ. Health Perspect. 120 (2012) 340–347; https://doi.org/10.1289/ehp.1103881 Search in Google Scholar

13. D. Belvisi, R. Pellicciari, G. Fabbrini, M. Tinazzi, A. Berardelli and G. Defazio, Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: What do prospective studies suggest?, Neurobiol. Dis. 134 (2020) 1–10; https://doi.org/10.1016/j.nbd.2019.104671 Search in Google Scholar

14. F. Tuchsen and A. Astrup Jensen, Agricultural work and the risk of Parkinson’s disease in Denmark, 1981-1993, Scand. J. Work Environ. Health 26 (2000) 359–362; https://doi.org/10.5271/sjweh.554 Search in Google Scholar

15. H. Petrovitch, G. Webster Ross, R. D. Abbott, W. T. Sanderson, D. S. Sharp, C. M. Tanner, K. H. Masaki, P. L. Blanchette, J. S. Popper, D. Foley, L. Launer and L. R. White, Plantation work and risk of Parkinson disease in a population-based longitudinal study, Arch. Neurol. 59 (2002) 1787–1792; https://doi.org/10.1001/archneur.59.11.1787 Search in Google Scholar

16. I. Baldi, P. Lebailly, B. Mohammed-Brahim, L. Letenneur, J. F. Dartigues and P. Brochard, Neuro-degenerative diseases and exposure to pesticides in the elderly, Am. J. Epidemiol. 157 (2003) 409–414; https://doi.org/10.1093/aje/kwf216.A Search in Google Scholar

17. A. Ascherio, H. Chen, M. G. Weisskopf, E. O’Reilly, M. L. McCullough, E. E. Calle, M. A. Schwarzschild and M. J. Thun, Pesticide exposure and risk for Parkinson’s disease, Ann. Neurol. 60 (2006) 197–203; https://doi.org/10.1002/ana.20904 Search in Google Scholar

18. M. G. Weisskopf, P. Knekt, E. J. O’Reilly, J. Lyytinen, A. Reunanen, F. Laden, L. Altshul and A. Ascherio, Persistent organochlorine pesticides in serum and risk of Parkinson disease, Neurology 74 (2010) 1055–1061; https://doi.org/10.1212/WNL.0b013e3181d76a93 Search in Google Scholar

19. A. L. Feldman, A. L. V. Johansson, G. Nise, M. Gatz, N. L. Pedersen and K. Wirdefeldt, Occupational exposure in Parkinsonian disorders: A 43-year prospective cohort study in men, Park. Relat. Disord. 17 (2011) 677–682; https://doi.org/10.1016/j.parkreldis.2011.06.009 Search in Google Scholar

20. L. Kenborg, C. F. Lassen, F. Lander and J. H. Olsen, Parkinson’s disease among gardeners exposed to pesticides – a Danish cohort study, Scand. J. Work Environ. Health 38 (2012) 65–69; https://doi.org/10.5271/sjweh.3176 Search in Google Scholar

21. M. Brouwer, T. Koeman, P. A. Van Den Brandt, H. Kromhout, L. J. Schouten, S. Peters, A. Huss and R. Vermeulen, Occupational exposures and Parkinson’s disease mortality in a prospective Dutch cohort, Occup. Environ. Med. 72 (2015) 448–455; https://doi.org/10.1136/oemed-2014-102209 Search in Google Scholar

22. P. Mulcahy, S. Walsh, A. Paucard, K. Rea and E. Dowd, Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone, Neuroscience 181 (2011) 234–242; https://doi.org/10.1016/j.neuroscience.2011.01.038 Search in Google Scholar

23. R. E. Heikkila, W. J. Nicklas, I. Vyas and R. C. Duvoisin, Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity, Neurosci. Lett. 59 (1985) 135–140; https://doi.org/10.1016/0304-3940(85)90580-4 Search in Google Scholar

24. R. J. Ferrante, J. B. Schulz, N. W. Kowall and M. F. Beal, Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra, Brain Res. 753 (1997) 157–162; https://doi.org/10.1016/S0006-8993(97)00008-5 Search in Google Scholar

25. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov and J. T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease, Nat. Neurosci. 3 (2000) 1301–1306; https://doi.org/10.1038/81834 Search in Google Scholar

26. J. T. Greenamyre, J. R. Cannon, R. Drolet and P. G. Mastroberardino, Lessons from the rotenone model of Parkinson’s disease, Trends Pharmacol. Sci. 31 (2010) 141–142; https://doi.org/10.1016/j.tips.2009.12.006 Search in Google Scholar

27. F. Pan-Montojo, O. Anichtchik, Y. Dening, L. Knels, S. Pursche, R. Jung, S. Jackson, G. Gille, M. G. Spillantini, H. Reichmann and R. H. W. Funk, Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice, PLoS One 5 (2010) Article ID 8762 (10 pages); https://doi.org/10.1371/journal.pone.0008762 Search in Google Scholar

28. Z. Liu, T. Li, D. Yang and W. W. Smith, Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease, Adv. Park. Dis. 2 (2013) 18–27; https://doi.org/10.4236/apd.2013.21004 Search in Google Scholar

29. W. S. Choi, R. D. Palmiter and Z. Xia, Loss of mitochondrial complex I activity potentiates dopa-mine neuron death induced by microtubule dysfunction in a Parkinson’s disease model, J. Cell Biol. 192 (2011) 873–882; https://doi.org/10.1083/jcb.201009132 Search in Google Scholar

30. N. Xiong, J. Xiong, M. Jia, L. Liu, X. Zhang, Z. Chen, J. Huang, Z. Zhang, L. Hou, Z. Luo, D. Ghoorah, Z. Lin and T. Wang, The role of autophagy in Parkinson’s disease: Rotenone-based modeling, Behav. Brain Funct. 9 (2013) 13–25; https://doi.org/10.1186/1744-9081-9-13 Search in Google Scholar

31. W. Le, P. Sayana and J. Jankovic, Animal models of Parkinson’s disease: A Gateway to therapeutics?, Neurotherapeutics 11 (2014) 92–110; https://doi.org/10.1007/s13311-013-0234-1 Search in Google Scholar

32. F. Cicchetti, J. Drouin-Ouellet and R. E. Gross, Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models?, Trends Pharmacol. Sci. 30 (2009) 475–483; https://doi.org/10.1016/j.tips.2009.06.005 Search in Google Scholar

33. M. Inden, Y. Kitamura, M. Abe, A. Tamaki, K. Takata and T. Taniguchi, Parkinsonian rotenone mouse model: Reevaluation of long-term administration of rotenone in C57BL/6 mice, Biol. Pharm. Bull. 34 (2011) 92–96; https://doi.org/10.1248/bpb.34.92 Search in Google Scholar

34. M. Gómez-Chavarín, R. Díaz-Pérez, R. Morales-Espinosa, J. Fernández-Ruiz, G. Roldán-Roldán, C. Torner and C. A. Torner Aguilar, Developmental effects of rotenone pesticide on rat nigrostriatal dopaminergic system, Salud Mental 36 (2013) 1–8; https://doi.org/10.17711/SM.0185-3325.2013.001 Search in Google Scholar

35. N. Kanwar, R. Bhandari, A. Kuhad and V. R. Sinha, Polycaprolactone-based neurotherapeutic delivery of rasagiline targeting behavioral and biochemical deficits in Parkinson’s disease, Drug Deliv. Transl. Res. 9 (2019) 891–905; https://doi.org/10.1007/s13346-019-00625-2 Search in Google Scholar

36. M. Fernández, E. Barcia, A. Fernández-Carballido, L. Garcia, K. Slowing and S. Negro, Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson’s disease, Int. J. Pharm. 438 (2012) 266–278; https://doi.org/10.1016/j.ijpharm.2012.09.024 Search in Google Scholar

37. E. Barcia, L. Boeva, L. García-García, K. Slowing, A. Fernández-Carballido, Y. Casanova and S. Negro, Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease, Drug Deliv. 24 (2017) 1112–1123; https://doi.org/10.1080/10717544.2017.1359862 Search in Google Scholar

38. S. Negro, L. Boeva, K. Slowing, A. Fernandez-Carballido, L. Garcia-García and E. Barcia, Efficacy of ropinirole-loaded PLGA microspheres for the reversion of rotenone-induced Parkinsonism, Curr. Pharm. Des. 23 (2016) 3423–3431; https://doi.org/10.2174/1381612822666160928145346 Search in Google Scholar

39. P. Patel, A. Pol, S. More, D. R. Kalaria, Y. N. Kalia and V. B. Patravale, Colloidal soft nanocarrier for transdermal delivery of dopamine agonist: Ex vivo and in vivo evaluation, J. Biomed. Nanotechnol. 10 (2014) 3291–3303; https://doi.org/10.1166/jbn.2014.1857 Search in Google Scholar

40. S. Palle and P. Neerati, Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease, Naunyn-Schmiedeberg´s Arch. Pharmacol. 391 (2018) 445–453; https://doi.org/10.1007/s00210-018-1474-8 Search in Google Scholar

41. P. Kundu, M. Das, K. Tripathy and S. K. Sahoo, Delivery of dual drug loaded lipid based nanoparticles across the blood−brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease, ACS Chem. Neurosci. 7 (2016) 1658–1670; https://doi.org/10.1021/acschemneuro.6b00207 Search in Google Scholar

42. Q. Yang, F. Fang, Y. Li and Y. Ye, Neuroprotective effects of the nanoparticles of zinc sapogenin from seeds of Camellia oleifera, J. Nanosci. Nanotechnol. 17 (2017) 2394–2400; https://doi.org/10.1166/jnn.2017.13436 Search in Google Scholar

43. E. M. Normando, B. M. Davis, L. De Groef, S. Nizari, L. A. Turner, N. Ravindran, M. Pahlitzsch, J. Brenton, G. Malaguarnera, L. Guo, S. Somavarapu and M. F. Cordeiro, The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: Evidence for a neuroprotective effect of rosiglitazone in the eye and brain, Acta Neuropathol. Commun. 4 (2016) 1–15; https://doi.org/10.1186/s40478-016-0346-z Search in Google Scholar

44. R. Nistico, B. Mehdawy, S. Piccirilli and N. Mercuri, Paraquat- and rotenone-induced models of Parkinson’s disease, Int. J. Immunopathol. Pharmacol. 24 (2011) 313–322; https://doi.org/10.1177/039463201102400205 Search in Google Scholar

45. A. Barbeau, L. Dallaire, N. T. Buu, J. Poirier and E. Rucinska, Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in rana pipiens, Life Sci. 37 (1985) 1529–1538; https://doi.org/10.1016/0024-3205(85)90185-7 Search in Google Scholar

46. P. M. Rappold, M. Cui, A. S. Chesser, J. Tibbett, J. C. Grima, L. Duan, N. Sen, J. A. Javitch and K. Tieua, Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3, Proc. Natl. Acad. Sci. USA 108 (2011) 20766–20771; https://doi.org/10.1073/pnas.1115141108 Search in Google Scholar

47. K. Shimizu, K. Ohtaki, K. Matsubara, K. Aoyama, T. Uezono, O. Saito, M. Suno, K. Ogawa, N. Hayase, K. Kimura and H. Shiono, Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat, Brain Res. 906 (2001) 135–142; https://doi.org/10.1016/S0006-8993(01)02577-X Search in Google Scholar

48. C. Berry, C. La Vecchia and P. Nicotera, Cell death and differentiation – Paraquat and Parkinson’s disease, Cell Death Differ. 17 (2010) 1115–1125; https://doi.org/10.1038/cdd.2009.217 Search in Google Scholar

49. S. Bastías-Candia, J. M. Zolezzi and N. C. Inestrosa, Revisiting the paraquat-induced sporadic Parkinson’s disease-like model, Mol. Neurobiol. 56 (2019) 1044–1055; https://doi.org/10.1007/s12035-018-1148-z Search in Google Scholar

50. J. Peng, X. O. Mao, F. F. Stevenson, M. Hsu and J. K. Andersen, The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway, J. Biol. Chem. 279 (2004) 32626–32632; https://doi.org/10.1074/jbc.M404596200 Search in Google Scholar

51. K. Ossowska, J. Wardas, M. Śmiałowska, K. Kuter, T. Lenda, J. M. Wierońska, B. Ziȩba, P. Nowak, J. Dąbrowska, A. Bortel, A. Kwieciński and S. Wolfarth, A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: An animal model of preclinical stages of Parkinson’s disease?, Eur. J. Neurosci. 22 (2005) 1294–1304; https://doi.org/10.1111/j.1460-9568.2005.04301.x Search in Google Scholar

52. K. Muthukumaran, S. Leahy, K. Harrison, M. Sikorska, J. K. Sandhu, J. Cohen, C. Keshan, D. Lopatin, H. Miller, H. Borowy-Borowski, P. Lanthier, S. Weinstock and S. Pandey, Orally delivered water soluble coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: Potential for therapeutic application in Parkinson’s disease, BMC Neurosci. 15 (2014) 21–32; https://doi.org/10.1186/1471-2202-15-21 Search in Google Scholar

53. A. L. McCormack, J. G. Atienza, J. W. Langston and D. A. Di Monte, Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration, Neuroscience 141 (2006) 929–937; https://doi.org/10.1016/j.neuroscience.2006.03.069 Search in Google Scholar

54. R. M. Lopachin and T. Gavin, Response to “Paraquat: The red herring of Parkinson’s disease research,” Toxicol. Sci. 103 (2008) 219–221; https://doi.org/10.1093/toxsci/kfn028 Search in Google Scholar

55. J. R. Richardson, Y. Quan, T. B. Sherer, J. T. Greenamyre and G. W. Miller, Paraquat neurotoxicity is distinct from that of MPTP and rotenone, Toxicol. Sci. 88 (2005) 193–201; https://doi.org/10.1093/toxsci/kfi304 Search in Google Scholar

56. M. Thiruchelvam, E. K. Richfield, R. B. Baggs, A. W. Tank and D. A. Cory-Slechta, The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: Implications for Parkinson’s disease, J. Neurosci. 20 (2000) 9207–9214; https://doi.org/10.1523/jneurosci.20-24-09207.2000 Search in Google Scholar

57. M. Thiruchelvam, E. K. Richfield, B. M. Goodman, R. B. Baggs and D. A. Cory-Slechta, Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype, Neurotoxicology 23 (2002) 621–633; https://doi.org/10.1016/S0161-813X(02)00092-X Search in Google Scholar

58. S. Srivastav, B. G. Anand, M. Fatima, K. P. Prajapati, S. S. Yadav, K. Kar and A. C. Mondal, Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in Drosophila melanogaster, ACS Chem. Neurosci. 11 (2020) 3772–3785; https://doi.org/10.1021/acschemneuro.0c00366 Search in Google Scholar

59. A. O. Correia, A. A. P. Cruz, A. T. R. de Aquino, J. R. G. Diniz, K. B. F. Santana and P. I. M. Cidade, J. D. Peixoto, D. L. Lucetti, M. E. P. Nobre, G. M. P. da Cruz, K. R. T. Neves and G. S. de Barros Viana, Neuroprotective effects of piperine, an alkaloid from the Piper genus, on the Parkinson’s disease model in rats, J. Neurol. Ther. 1 (2015) 1−8; https://doi.org/10.14312/2397-1304.2015-1 Search in Google Scholar

60. H. Liu, R. Luo, X. Chen, J. Liu, Y. Bi, L. Zheng and X. Wu, Tissue distribution profiles of three antiparkinsonian alkaloids from Piper longum L. in rats determined by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B 928 (2013) 78−82; https://doi.org/10.1016/j.jchromb.2013.03.021 Search in Google Scholar

61. S. Bastías-Candia, M. Di Benedetto, C. D’Addario, S. Candeletti and P. Romualdi, Combined exposure to agriculture pesticides, paraquat and maneb, induces alterations in the N/OFQ-NOPr and PDYN/KOPr systems in rats: Relevance to sporadic Parkinson’s disease, Environ. Toxicol. 30 (2015) 656–663; https://doi.org/10.1002/tox.21943 Search in Google Scholar

62. R. M. Miller, G. L. Kiser, T. Kaysser-Kranich, C. Casaceli, E. Colla, M. K. Lee, C. Palaniappan and H. J. Federoff, Wild-type and mutant α-synuclein induce a multi-component gene expression profile consistent with shared pathophysiology in different transgenic mouse models of PD, Exp. Neurol. 204 (2007) 421–432; https://doi.org/10.1016/j.expneurol.2006.12.005 Search in Google Scholar

63. L. C. Grandi, G. Di Giovanni and S. Galati, Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms, J. Neurosci. Methods 308 (2018) 205–218; https://doi.org/10.1016/j.jneumeth.2018.08.012 Search in Google Scholar

64. J. Langston, P. Ballard, J. Tetrud and I. Irwin, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis, Science 219 (1983) 979–980; https://doi.org/10.1126/science.6823561 Search in Google Scholar

65. M. H. Yan, X. Wang and X. Zhu, Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease, Free Radic. Biol. Med. 62 (2013) 90–101; https://doi.org/10.1016/j.freeradbiomed.2012.11.014 Search in Google Scholar

66. J. Bové and C. Perier, Neurotoxin-based models of Parkinson’s disease, Neuroscience 211 (2012) 51–76; https://doi.org/10.1016/j.neuroscience.2011.10.057 Search in Google Scholar

67. L. K. Klaidman, J. D. Adams, A. C. Leung, S. Sam Kim and E. Cadenas, Redox cycling of MPP+: Evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase, Free Radic. Biol. Med. 15 (1993) 169–179; https://doi.org/10.1016/0891-5849(93)90056-Z Search in Google Scholar

68. V. Jackson-Lewis, M. Jakowec, R. E. Burke and S. Przedborski, Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neurodegeneration 4 (1995) 257–269; https://doi.org/10.1016/1055-8330(95)90015-2 Search in Google Scholar

69. J. Blesa, S. Phani, V. Jackson-Lewis and S. Przedborski, Classic and new animal models of Parkinson’s disease, J. Biomed. Biotechnol. 2012 (2012) Article ID 845618; https://doi.org/10.1155/2012/845618 Search in Google Scholar

70. S. Duty and P. Jenner, Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease, Br. J. Pharmacol. 164 (2011) 1357–1391; https://doi.org/10.1111/j.1476-5381.2011.01426.x Search in Google Scholar

71. V. Jackson-Lewis and S. Przedborski, Protocol for the MPTP mouse model of Parkinson’s disease, Nat. Protoc. 2 (2007) 141–151; https://doi.org/10.1038/nprot.2006.342 Search in Google Scholar

72. D. T. Stephenson, M. D. Meglasson, M. A. Connell, M. A. Childs, E. Hajos-Korcsok and M. E. Emborg, The effects of a selective dopamine D2 receptor agonist on behavioral and pathological outcome in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys, J. Pharmacol. Exp. Ther. 314 (2005) 1257–1266; https://doi.org/10.1124/jpet.105.087379 Search in Google Scholar

73. J. S. Schneider and C. J. Kovelowski, Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys, Brain Res. 519 (1990) 122–128; https://doi.org/10.1016/0006-8993(90)90069-N Search in Google Scholar

74. D. S. Goldstein, S. T. Li, C. Holmes and K. Bankiewicz, Sympathetic innervation in the 1-methyl--4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease, J. Pharmacol. Exp. Ther. 306 (2003) 855–860; https://doi.org/10.1124/jpet.103.051714 Search in Google Scholar

75. E. Garbayo, E. Ansorena, H. Lana, M. del M. Carmona-Abellan, I. Marcilla, J. L. Lanciego, M. R. Luquin and M. J. Blanco-Prieto, Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys, Biomaterials. 110 (2016) 11–23; https://doi.org/10.1016/j.biomaterials.2016.09.015 Search in Google Scholar

76. F. Blandini and M. T. Armentero, Animal models of Parkinson’s disease, FEBS J. 279 (2012) 1156–1166; https://doi.org/10.1111/j.1742-4658.2012.08491.x Search in Google Scholar

77. S. Sánchez-Iglesias, P. Rey, E. Méndez-Álvarez, J. L. Labandeira-García and R. Soto-Otero, Time-course of brain oxidative damage caused by intrastriatal administration of 6-hydroxydopamine in a rat model of Parkinson’s disease, Neurochem. Res. 32 (2007) 99–105; https://doi.org/10.1007/s11064-006-9232-6 Search in Google Scholar

78. D. Hernandez-Baltazar, L. M. Zavala-Flores and A. Villanueva-Olivo, The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model, Neurología (English Ed.) 32 (2017) 533–539; https://doi.org/10.1016/j.nrleng.2015.06.019 Search in Google Scholar

79. J. L. Venero, M. Revuelta, J. Cano and A. Machado, Time course changes in the dopaminergic nigrostriatal system following transection of the medial forebrain bundle: detection of oxidatively modified proteins in substantia nigra, J. Neurochem. 68 (2002) 2458–2468; https://doi.org/10.1046/j.1471-4159.1997.68062458.x Search in Google Scholar

80. D. Stanic, D. I. Finkelstein, D. W. Bourke, J. Drago and M. K. Horne, Time course of striatal re-inner vation following lesions of dopaminergic SNpc neurons of the rat, Eur. J. Neurosci. 18 (2003) 1175–1188; https://doi.org/10.1046/j.1460-9568.2003.02800.x Search in Google Scholar

81. M. Decressac, B. Mattsson and A. Björklund, Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease, Exp. Neurol. 235 (2012) 306–315; https://doi.org/10.1016/j.expneurol.2012.02.012 Search in Google Scholar

82. D. Hernandez-Baltazar, M. E. Mendoza-Garrido and D. Martinez-Fong, Activation of GSK-3β and caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine, PLoS One 8 (2013) e70951 (13 pages); https://doi.org/10.1371/journal.pone.0070951 Search in Google Scholar

83. G. Mercanti, G. Bazzu and P. Giusti, A 6-hydroxydopamine in vivo model of Parkinson’s disease, Methods Mol. Biol. 846 (2012) 355–364; https://doi.org/10.1007/978-1-61779-536-7_30 Search in Google Scholar

84. K. Sakai and D. M. Gash, Effect of bilateral 6-OHDA lesions of the substantia nigra on locomotor activity in the rat, Brain Res. 633 (1994) 144–150; https://doi.org/10.1016/0006-8993(94)91533-4 Search in Google Scholar

85. M. Healy-Stoffel, S. O. Ahmad, J. A. Stanford and B. Levant, A novel use of combined tyrosine hydroxylase and silver nucleolar staining to determine the effects of a unilateral intrastriatal 6-hydroxydopamine lesion in the substantia nigra: A stereological study, J. Neurosci. Methods 210 (2012) 187–194; https://doi.org/10.1016/j.jneumeth.2012.07.013 Search in Google Scholar

86. J. T. Da Rocha, S. Pinton, B. M. Gai and C. W. Nogueira, Diphenyl diselenide reduces mechanical and thermal nociceptive behavioral responses after unilateral intrastriatal administration of 6-hydroxydopamine in rats, Biol. Trace Elem. Res. 154 (2013) 372–378; https://doi.org/10.1007/s12011-013-9736-2 Search in Google Scholar

87. A. Heuer, G. A. Smith, M. J. Lelos, E. L. Lane and S. B. Dunnett, Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites, Behav. Brain Res. 228 (2012) 30–43; https://doi.org/10.1016/j.bbr.2011.11.027 Search in Google Scholar

88. D. Kirik, C. Rosenblad and A. Björklund, Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat, Exp. Neurol. 152 (1998) 259–277; https://doi.org/10.1006/exnr.1998.6848 Search in Google Scholar

89. H. S. Lindgren, M. J. Lelos and S. B. Dunnett, Do alpha-synuclein vector injections provide a better model of Parkinson’s disease than the classic 6-hydroxydopamine model?, Exp. Neurol. 237 (2012) 36–42; https://doi.org/10.1016/j.expneurol.2012.05.022 Search in Google Scholar

90. P. Qiu, H. Wang, Y. Tai, L. Chen, E. Huang, C. Liu and X. Yang, Protective effect of alpha-synuclein knockdown on methamphetamine-induced neurotoxicity in dopaminergic neurons, Neural Regen. Res. 9 (2014) 951–958; https://doi.org/10.4103/1673-5374.133146 Search in Google Scholar

91. Q. He, J. B. Koprich, Y. Wang, W. B. Yu, B. G. Xiao, J. M. Brotchie and J. Wang, Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV α-synuclein rat model of Parkinson’s disease, Mol. Neurobiol. 53 (2016) 2258–2268; https://doi.org/10.1007/s12035-015-9173-7 Search in Google Scholar

92. L. F. Razgado-Hernandez, A. J. Espadas-Alvarez, P. Reyna-Velazquez, A. Sierra-Sanchez, V. Anaya-Martinez, I. Jimenez-Estrada, M. J. Bannon, D. Martinez-Fong and J. Aceves-Ruiz, The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson’s disease, PLoS One 10 (2015) e0117391 (25 pages); https://doi.org/10.1371/journal.pone.0117391 Search in Google Scholar

93. R. Pahuja, K. Seth, A. Shukla, R. K. Shukla, P. Bhatnagar, L. K. S. Chauhan, P. N. Saxena, J. Arun, B. P. Chaudhari, D. K. Patel, S. P. Singh, R. Shukla, V. K. Khanna, P. Kumar, R. K. Chaturvedi and K. C. Gupta, Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats, ACS Nano 9 (2015) 4850–4871; https://doi.org/10.1021/nn506408v Search in Google Scholar

94. C. Bishop, J. L. Taylor, D. M. Kuhn, K. L. Eskow, J. Y. Park and P. D. Walker, MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation, Eur. J. Neurosci. 23 (2006) 2669–2676; https://doi.org/10.1111/j.1460-9568.2006.04790.x Search in Google Scholar

95. T. Ren, X. Yang, N. Wu, Y. Cai, Z. Liu and W. Yuan, Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats, Neurosci. Lett. 502 (2011) 117–122; https://doi.org/10.1016/j.neulet.2011.07.042 Search in Google Scholar

96. A. Azeem, S. Talegaonkar, L. M. Negi, F. J. Ahmad, R. K. Khar and Z. Iqbal, Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation, Int. J. Pharm. 422 (2012) 436–444; https://doi.org/10.1016/j.ijpharm.2011.10.039 Search in Google Scholar

97. N. Giladi, B. Boroojerdi, A. D. Korczyn, D. J. Burn, C. E. Clarke and A. H. V. Schapira, Rotigotine transdermal patch in early Parkinson’s disease: A randomized, double-blind, controlled study versus placebo and ropinirole, Mov. Disord. 22 (2007) 2398–2404; https://doi.org/10.1002/mds.21741 Search in Google Scholar

98. O. K. Sujith and C. Lane, Therapeutic options for continuous dopaminergic stimulation in Parkinson’s disease, Ther. Adv. Neurol. Disord. 2 (2009) 105–113; https://doi.org/10.1177/1756285608101378 Search in Google Scholar

99. A. Wang, L. Wang, K. Sun, W. Liu, C. Sha and Y. Li, Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats, Pharm. Res. 29 (2012) 2367–2376; https://doi.org/10.1007/s11095-012-0762-0 Search in Google Scholar

100. M. J. Tsai, Y. Bin Huang, P. C. Wu, Y. S. Fu, Y. R. Kao, J. Y. Fang and Y. H. Tsai, Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations, J. Pharm. Sci. 100 (2011) 547–557; https://doi.org/10.1002/jps.22285 Search in Google Scholar

101. E. Garbayo, E. Ansorena, J. L. Lanciego, M. J. Blanco-Prieto and M. S. Aymerich, Long-term neuro-protection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson’s disease, Mov. Disord. 26 (2011) 1943–1947; https://doi.org/10.1002/mds.23793 Search in Google Scholar

102. P. H. Yang, J. X. Zhu, Y. D. Huang, X. Y. Zhang, P. Lei, A. I. Bush, Q. Xiang, Z. J. Su and Q. H. Zhang, Human basic fibroblast growth factor inhibits tau phosphorylation via the PI3K/Akt-GSK3β signaling pathway in a 6-hydroxydopamine-induced model of Parkinson’s disease, Neuro degener. Dis. 16 (2016) 357–369; https://doi.org/10.1159/000445871 Search in Google Scholar

103. Y. Z. Zhao, X. Li, C. T. Lu, M. Lin, L. J. Chen, Q. Xiang, M. Zhang, R. R. Jin, X. Jiang, X. T. Shen, X. K. Li and J. Cai, Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats, Nanomed. Nanotechnol. Biol. Med. 10 (2014) 755–764; https://doi.org/10.1016/j.nano.2013.10.009 Search in Google Scholar

104. E. Herrán, J. A. Ruiz-Ortega, A. Aristieta, M. Igartua, C. Requejo, J. V. Lafuente, L. Ugedo, J. L. Pedraz and R. M. Hernández, In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease, Eur. J. Pharm. Biopharm. 85 (2013) 1183–1190; https://doi.org/10.1016/j.ejpb.2013.03.034 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo