1. bookVolume 72 (2022): Issue 2 (June 2022)
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Isolation of MDCK cells with low expression of mdr1 gene and their use in membrane permeability screening

Published Online: 30 Dec 2021
Page range: 275 - 288
Accepted: 29 Mar 2021
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The Madin-Darby canine kidney (MDCK) cell line is frequently used for permeability screening in drug discovery. It contains endogenous transporters, most prominently canine multidrug resistance P-glycoprotein (Mdr1), which can interfere with studies of P-glycoprotein substrate assessment and permeability measurements. Because MDCK wild type (WT) is genetically heterogeneous, an isolation procedure was investigated in this study to obtain the subclonal line with low P-glycoprotein expression. The best clone obtained had up to 3-fold lower amprenavir efflux and P-glycoprotein expression in comparison to WT. Of 12 standard compounds tested that exhibited active efflux in WT cells, 11 showed a decrease in efflux in the isolated clone. However, the decrease was not below the cut-off value of 2, indicating residual P--glycoprotein activity. Clone isolation via the limiting dilution method, combined with bidirectional amprenavir permeability for clone selection, successfully identified MDCK clones with substantially lower P-glycoprotein efflux and has been demonstrated as a useful tool for assessing passive permeability in early drug discovery.

Keywords

P. Li, Preclinical in vitro screening assays for drug-like properties, Drug Discov. Today Technol. 2 (2005) 179–185; https://doi.org/10.1016/j.ddtec.2005.05.02410.1016/j.ddtec.2005.05.024Search in Google Scholar

D. A. Volpe, Drug-permeability and transporter assays in Caco-2 and MDCK cell lines, Future Med. Chem. 3 (2011) 2063–2077; https://doi.org/10.4155/fmc.11.14910.4155/fmc.11.149Search in Google Scholar

P. Artursson and J. Karlsson, Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells, Biochem. Biophys. Res. Commun. 175 (1991) 880–885; https://doi.org/10.1016/0006-291X(91)91647-U10.1016/0006-291X(91)91647-USearch in Google Scholar

S. Yee, In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man – fact or myth, Pharm. Res. 14 (1997) 763–766; https://doi.org/10.1023/a:101210252278710.1023/A:1012102522787Search in Google Scholar

D. Newby, A. A. Freitas and T. Ghafourian, Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption, Eur. J. Med. Chem. 90 (2015) 751–765; https://doi.org/10.1016/j.ejmech.2014.12.00610.1016/j.ejmech.2014.12.00625528330Search in Google Scholar

J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick and J. R. Grove, MDCK (Madin-Darby Canine Kidney) Cells: A tool for membrane permeability screening, J. Pharm. Sci. 88 (1999) 28–33; https://doi.org/10.1021/js980320510.1021/js98032059874698Search in Google Scholar

T. T. Tran, T. Gales, B. Maleeff, T. Aldinger, J. W. Polli, A. Ayrton, H. Ellens, J. Bentz and A. Mittal, Exact kinetic analysis of passive transport across a polarized confluent MDCK cell monolayer modeled as a single barrier, J. Pharm. Sci. 93 (2004) 2108–2123; https://doi.org/10.1002/jps.2010510.1002/jps.2010515236458Search in Google Scholar

Y. Quan, Y. Jin, T. N. Faria, C. A. Tilford, A. He, D. A. Wall, R. L. Smith and B. S. Vig, Expression profile of drug and nutrient absorption related genes in Madin-Darby Canine Kidney (MDCK) cells grown under differentiation conditions, Pharmaceutics 4 (2012) 314–333; https://doi.org/10.3390/pharmaceutics402031410.3390/pharmaceutics4020314383491424300234Search in Google Scholar

F. Sharom, The P-glycoprotein multidrug transporter, Essays Biochem. 50 (2011) 161–178; https://doi.org/10.1042/bse050016110.1042/bse050016121967057Search in Google Scholar

M. V. S. Varma, K. Sateesh and R. Panchagnula, Functional role of P-glycoprotein in limiting intestinal absorption of drugs: Contribution of passive permeability to P-glycoprotein mediated efflux transport, Mol. Pharmaceutics 2 (2005) 12–21, https://doi.org/10.1021/mp049919610.1021/mp049919615804173Search in Google Scholar

L.-B. Goh, K. J. Spears, D. Yao, A. Ayrton, P. Morgan, C. R. Wolf and T. Friedberg, Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man, Biochem. Pharmacol. 64 (2002) 1569–1578.10.1016/S0006-2952(02)01355-2Search in Google Scholar

L. Di, C. Whitney-Pickett, J. P. Umland, H. Zhang, X. Zhang, D. F. Gebhard, Y. Lai, J. J. Federico, R. E. Davidson, R. Smith, E. L. Reyner, C. Lee, B. Feng, C. Rotter, M. V. Varma, S. Kempshall, K. Fenner, A. F. El-Kattan, T. E. Liston and M. D. Troutman, Development of a new permeability assay using low-efflux MDCKII cells, J. Pharm. Sci. 100 (2011) 4974–4985; https://doi.org/10.1002/jps.2267410.1002/jps.22674Search in Google Scholar

Food and Drug Administration Center for Drug Evaluation and Research (FDA/CDER), In vitro metabolism- and transporter-mediated drug-drug interaction studies guidance for industry, October, 2017; https://www.fda.gov/media/108130/download; access date November 10, 2020.Search in Google Scholar

E. C. Chen, F. Broccatelli, E. Plise, B. Chen, L. Liu, J. Cheong, S. Zhang, J. Jorski, K. Gaffney, K. K. Umemoto and L. Salphati, Evaluating the utility of canine Mdr1 knockout Madin-Darby Canine Kidney I cells in permeability screening and efflux substrate determination, Mol. Pharmaceutics 15 (2018) 5103–5113; https://doi.org/10.1021/acs.molpharmaceut.8b0068810.1021/acs.molpharmaceut.8b00688Search in Google Scholar

K. Kuteykin-Teplyakov, C. Luna-Tortos, K. Ambroziak and W. Loscher, Differences in the expression of endogenous efflux transporters in MDR1-transfected versus wildtype cell lines affect P-glycoprotein mediated drug transport, Br. J. Pharmacol. 160 (2010) 1453–1463.10.1111/j.1476-5381.2010.00801.xSearch in Google Scholar

J. M. Arthur, The MDCK cell line is made up of populations of cells with diverse resistive and transport properties, Tissue Cell 32 (2000) 446–450.10.1054/tice.2000.0135Search in Google Scholar

I. Simoff, M. Karlgren, M. Backlund, A.-C. Lindström, F. Z. Gaugaz, P. Matsson and P. Artursson, Complete knockout of endogenous Mdr1 (Abcb1) in MDCK cells by CRISPR-Cas9, J. Pharm. Sci. 105 (2016) 1017–1021; https://doi.org/10.1016/S0022-3549(15)00171-910.1016/S0022-3549(15)00171-9Search in Google Scholar

J. R. Yaron, C. P. Ziegler, T. H. Tran, H. L. Glenn and D. R. A. Meldrum, Convenient, optimized pipeline for isolation, fluorescence microscopy and molecular analysis of live single cells, Biol. Proced. Online 16 (2014) 9; https://doi.org/10.1186/1480-9222-16-910.1186/1480-9222-16-9402254324834016Search in Google Scholar

R. I. Freshney, Cloning and Selection, in Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, John Wiley & Sons, Ltd., New York 2010, pp. 207–225.10.1002/9780470649367.ch13Search in Google Scholar

K. J. Livak, S. J. Flood, J. Marmaro, W. Giusti, and K. Deetz, Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization, Genome Res. 4 (1995) 357–362; https://doi.org/10.1101/gr.4.6.35710.1101/gr.4.6.3577580930Search in Google Scholar

I. Hubatsch, E. G. E. Ragnarsson, and P. Artursson, Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers, Nat. Protoc. 2 (2007) 2111–2119; https://doi.org/10.1038/nprot.2007.30310.1038/nprot.2007.30317853866Search in Google Scholar

R. Mukkavilli, G. Jadhav and S. Vangala, Evaluation of drug transport in MDCKII-wild type, MDCKII-MDR1, MDCKII-BCRP and Caco-2 cell lines, CPB 18 (2018) 1151–1158; https://doi.org/10.2174/138920101966618030809185510.2174/138920101966618030809185529521222Search in Google Scholar

Sigma-Aldrich, Technical bulletin, CompoZr ADMET/Tox Cell Lines C2BBe1 BCRP Knockout and Wild Type Cell Lines 24 Well Assay Ready Plates, 2013; https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/mtox1002pc24bul.pdf; access date November 10, 2020.Search in Google Scholar

P. Acharya, M. P. O’Connor, J. W. Polli, A. Ayrton, H. Ellens and J. Bentz, Kinetic identification of membrane transporters that assist P-glycoprotein-mediated transport of digoxin and loperamide through a confluent monolayer of MDCKII-HMDR1 cells, Drug Metab. Dispos. 36 (2008) 452–460; https://doi.org/10.1124/dmd.107.01730110.1124/dmd.107.01730117967933Search in Google Scholar

The international transporter consortium, membrane transporters in drug development, Nat. Rev. Drug Discov. 9 (2010) 215–236; https://doi.org/10.1038/nrd302810.1038/nrd3028332607620190787Search in Google Scholar

J. Rautio, J. E. Humphreys, L. O. Webster, A. Balakrishnan, J. P. Keogh, J. R. Kunta, C. J. Serabjit-Singh and J. W. Polli, In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: A recommendation for probe substrates, Drug Metab. Dispos. 34 (2006) 786–792; https://doi.org/10.1124/dmd.105.00861510.1124/dmd.105.00861516455806Search in Google Scholar

M. Hacker, W. S. Messer and K. A. Bachmann, Pharmacology: Principles and Practice; Academic Press, San Diego 2009, pp. 176–177.Search in Google Scholar

M. Karlgren, I. Simoff, M. Backlund, C. Wegler, M. Keiser, N. Handin, J. Müller, P. Lundquist, A.-C. Jareborg, S. Oswald and P. Artursson, A CRISPR-Cas9 generated MDCK cell line expressing human MDR1 without endogenous canine MDR1 (cABCB1): An improved tool for drug efflux studies, J. Pharm. Sci. 106 (2017) 2909–2913; https://doi.org/10.1016/j.xphs.2017.04.01810.1016/j.xphs.2017.04.01828450237Search in Google Scholar

K. A. Lentz, J. W. Polli, S. A. Wring, J. E. Humphreys and J. A. Polli, Influence of passive permeability on apparent P-glycoprotein kinetics, Pharm. Res. 17 (2000) 1456–1460; https://doi.org/10.1023/A:100769262221610.1023/A:1007692622216Search in Google Scholar

E. Gundogdu, E. Karasulu, I. Gonzalez Alvarez and M. Bermejo Sanz, Assessment of fexofenadine hydrochloride permeability and dissolution with an anionic surfactant using Caco-2 cells, Pharmazie 66 (2011) 747–753; https://doi.org/10.1691/ph.2011.1054Search in Google Scholar

M. Cvetkovic, B. Leake, M. F. Fromm, G. R. Wilkinson and R. B. Kim, OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine, Drug Metab. Dispos. 27 (1999) 866–871.Search in Google Scholar

A. Milić, V. B. Mihaljević, J. Ralić, A. Bokulić, D. Nožinić, B. Tavčar, B. Mildner, V. Munić, I. Malnar and J. Padovan, A comparison of in vitro ADME properties and pharmacokinetics of azithromycin and selected 15-membered ring macrolides in rodents, Eur. J. Drug. Metab. Pharmacokinet. 39 (2014) 263–276; https://doi.org/10.1007/s13318-013-0155-810.1007/s13318-013-0155-824114177Search in Google Scholar

J. Padovan, J. Ralić, V. Letfus, A. Milić and V. Bencetić Mihaljević, Investigating the barriers to bioavailability of macrolide antibiotics in the rat, Eur. J. Drug. Metab. Pharmacokinet. 37 (2012) 163–171; https://doi.org/10.1007/s13318-011-0074-510.1007/s13318-011-0074-522113743Search in Google Scholar

D. Gartzke and G. Fricker, Establishment of optimized MDCK cell lines for reliable efflux transport studies, J. Pharm. Sci. 103 (2014) 1298–1304; https://doi.org/10.1002/jps.2390110.1002/jps.2390124532159Search in Google Scholar

J. A. Ruell and A. Avdeef, Absorption Screening Using the PAMPA Approach, in Optimization in Drug Discovery (Ed. Z. Yan and G. W. Caldwell), Humana Press, Totowa 2004, pp. 37–64.10.1385/1-59259-800-5:037Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo