[1. R. L. Graham, E. F. Donaldson and R. S. Baric, A decade after SARS: strategies for controlling emerging coronaviruses, Nat. Rev. Microbiol. 11 (2013) 836–848; https://doi.org/10.1038/nrmicro314310.1038/nrmicro3143514754324217413]Search in Google Scholar
[2. V. S. Raj, H. Mou, S. L. Smits, D. H. Dekkers, M. A. Müller, R. Dijkman, D. Muth, J. A. Demmers, A. Zaki, R. A. Fouchier, V. Thiel, C. Drosten, P. J. Rottier, A. D. Osterhaus, B. J. Bosch and B. L. Haagmans, Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC, Nature495 (2013) 251–254; https://doi.org/10.1038/nature1200510.1038/nature12005709532623486063]Search in Google Scholar
[3. A. M. Zaki, S. V. Boheemen, T. M. Bestebroer, A. D. Osterhaus and R. A. Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, N. Engl. J. Med.367 (2012) 1814–1820; https://doi.org/10.1056/NEJMoa121172110.1056/NEJMoa121172123075143]Search in Google Scholar
[4. P. A. Rota, M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle, S. Peñaranda, B. Bankamp, K. Maher, M. H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J. L. DeRisi, Q. Chen, D. Wang, D. D. Erdman, T. C. Peret, C. Burns, T. G. Ksiazek, P. E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Günther, A. D. Osterhaus, C. Drosten, M. A. Pallansch, L. J. Andersonthe and W. J. Bellini, Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science300 (2003) 1394–1399; https://doi.org/10.1126/science.108595210.1126/science.108595212730500]Search in Google Scholar
[5. J. S. M. Peiris, K. Y. Yuen, A. D. M. E. Osterhaus and K. Stöhr, The severe acute respiratory syndrome, N. Engl. J. Med.349 (2003) 2431–2441; https://doi.org/10.1056/NEJMra03249810.1056/NEJMra03249814681510]Search in Google Scholar
[6. P. M. Penttinen, K. Kaasik-Aaslav, A. Friaux, A. Donachie, B. Sudre, A. J. Amato-Gauci, Z. A. Memish and D. Coulombier, Taking stock of the first 133 MER S coronavirus cases globally – Is the epidemic changing? Euro Surveill. 18 (2013) 1–5; https://doi.org/10.2807/1560-7917.ES2013.18.39.2059610.2807/1560-7917.ES2013.18.39.2059624094061]Search in Google Scholar
[7. World Health Organization, MERS-CoV Global Summary and Assessment of Risk, (WHO/MERS/RA/August18), WHO, Geneva 2018]Search in Google Scholar
[8. A. O. Adedeji and S. G. Sarafianos, Antiviral drugs specific for coronaviruses in preclinical development, Curr. Opin. Virol.8 (2014) 45–53; https://doi.org/10.1016/j.coviro.2014.06.00210.1016/j.coviro.2014.06.002419580424997250]Search in Google Scholar
[9. L. J. Stockman, R. Bellamy and P. Garner, SARS: Systematic review of treatment effects, PLoS Med. 3 (2006) 1525–1531; https://doi.org/10.1371/journal.pmed.003034310.1371/journal.pmed.0030343156416616968120]Search in Google Scholar
[10. R. Y. Kao, W. H. Tsui, T. S. Lee, J. A. Tanner, R. M. Watt, J. D. Huang, L. Hu, G. Chen, Z. Chen, L. Zhang, T. He, K. H. Chan, H. Tse, A. P. To, L. W. Ng, B. C. Wong, H. W. Tsoi, D. Yang, D. D. Ho and K. Y. Yuen, Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics, Chem. Biol. 11 (2004) 1293–1299; https://doi.org/10.1016/j.chembiol.2004.07.01310.1016/j.chembiol.2004.07.013712855315380189]Search in Google Scholar
[11. D. N. Frick and A. M. I. Lam, Understanding helicases as a means of virus control, Curr. Pharm. Des. 12 (2006) 1315–1338; https://doi.org/10.2174/13816120677636114710.2174/138161206776361147357168616611118]Search in Google Scholar
[12. W. Hao, J. A. Wojdyla, R. Zhao, R. Han, R. Das, I. Zlatev, M. Manoharan, M. Wang and S. Cui, Crystal structure of Middle East respiratory syndrome coronavirus helicase, PLoS Pathog. 13 (2017) e1006474 (19 pages); https://doi.org/10.1371/j.ppat.1006474]Search in Google Scholar
[13. A. O. Adedeji and H. Lazarus, Biochemical characterization of Middle East respiratory syndrome coronavirus helicase, mSphere1 (2016) e00235-16 (14 pages); https://doi.org/org/10.1128/mSphere.00235-16]Search in Google Scholar
[14. D. Dheer, V. Singh and R. Shankar, Medicinal attributes of 1,2,3-triazoles: Current developments, Bioorg. Chem. 71 (2017) 30–54; https://doi.org/10.1016/j.bioorg.2017.01.01010.1016/j.bioorg.2017.01.01028126288]Search in Google Scholar
[15. Y. W. He, C. Z. Dong, J. Y. Zhao, L. Ma, Y. H. Li and H. A. Aisa, 1,2,3-Triazole-containing derivatives of rupestonic acid: Click-chemical synthesis and antiviral activities against influenza viruses, Eur. J. Med. Chem. 76 (2014) 245–255; https://doi.org/10.1016/j.ejmech.2014.02.02910.1016/j.ejmech.2014.02.02924583605]Search in Google Scholar
[16. J. Zhao and H. A. Aisa, Synthesis and anti-influenza activity of aminoalkyl rupestonates, Bioorg. Med. Chem. Lett.22 (2012) 2321–2325; https://doi.org/10.1016/j.bmcl.2012.01.05610.1016/j.bmcl.2012.01.05622341943]Search in Google Scholar
[17. A. O. Adedeji, K. Singh, N. E. Calcaterra, M. L. DeDiego, L. Enjuanes, S. Weiss and S. G. Sarafianos, Antimicrob. Agents Chemother.56 (2012) 4718–4728; https://doi.org/10.1128/AAC.00957-1210.1128/AAC.00957-12342189022733076]Search in Google Scholar
[18. A. O. Adedeji, K. Singh, A. Kassim, C. M. Coleman, R. Elliott, S. R. Weiss, M. B. Frieman and S. G. Sarafianos, Evaluation of SSYA10-001 as a replication inhibitor of SARS, MHV and MERS corona-viruses, Antimicrob. Agents Chemother. 58 (2014) 4894–898; https://doi.org/10.1128/AAC.02994-1410.1128/AAC.02994-14413604124841268]Search in Google Scholar
[19. A. A. Fadda, S. Bondock, R. Rabie and H. A. Etman, Cyanoacetamide derivatives as synthons in heterocyclic synthesis, Turk. J. Chem.32 (2008) 259–286; https://doi.org/10.1.1.574.4827]Search in Google Scholar
[20. J. A. Tanner, R. M. Watt, Y. B. Chai, L. Y. Lu, M. C. Lin, J. S. Peiris, L. L. Poon, H. F. Kung and J. D. Huang, The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5’ to 3’ viral helicases, J. Biol. Chem. 278 (2003) 39578–39582; https://doi.org/10.1074/jbc.C30032820010.1074/jbc.C300328200806095012917423]Search in Google Scholar
[21. D. J. T. Porter, Inhibition of the hepatitis C virus helicase-associated ATPase activity by the combination of ADP, NaF, MgCl2, and poly(rU) – Two ADP binding sites on the enzyme-nucleic acid complex, J. Biol. Chem. 273 (1998) 7390–7396; https://doi.org/10.1074/jbc.273.13.739010.1074/jbc.273.13.73909516436]Search in Google Scholar
[22. A. M. Boguszewska-Chachulska, M. Krawczyk, A. Stankiewicz, A. Gozdek, A-L. Haenni and L. Strokovskaya, Direct fluorometric measurement of hepatitis C virus helicase activity, FEBS Lett.567 (2004) 253–258; https://doi.org/10.1016/j.febslet.2004.04.07210.1016/j.febslet.2004.04.07215178332]Search in Google Scholar
[23. M. K. Abdel-Hamid, A. A. Abdel-Hafez, N. A. El-Koussi, N. M. Mahfouz, A. Innocenti and C. T. Supuran, Design, synthesis, and docking studies of new 1,3,4-thiadiazole-2-thione derivatives with carbonic anhydrase inhibitory activity, Bioorg. Med. Chem. 15 (2007) 6975–6984; https://doi.org/10.1016/j.bmc.2007.07.04410.1016/j.bmc.2007.07.04417822907]Search in Google Scholar
[24. J. A. Tanner, B. J. Zheng, J. Zhou, R. M. Watt, J. Q. Jiang, K. L. Wong, Y. P. Lin, L.Y. Lu, M. L. He, H. F. Kung, A. J. Kesel and J. D. Huang, The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus, Chem. Biol. 12 (2005) 303–311; https://doi.org/10.1016/j.chembiol.2005.01.00610.1016/j.chembiol.2005.01.006711098815797214]Search in Google Scholar
[25. Z-Y. Wu, N. Liu, B. Qin, L. Huang, F. Yu, K. Qian, S. L. Morris-Natschke, S. Jiang, C. H. Chen, K-H. Lee and L. Xie, Optimization of the antiviral potency and lipophilicity of halogenated 2,6-diarylpyridinamines as a novel class of HIV-1 NNRTIS, ChemMedChem9 (2014) 1546–1555; https://doi.org/10.1002/cmdc.20140007510.1002/cmdc.201400075408599624895029]Search in Google Scholar