1. bookVolume 56 (2017): Issue 1 (January 2017)
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
access type Open Access

Bacteroides spp. – clinical significance, antibiotic resistance and identification methods

Published Online: 21 May 2019
Volume & Issue: Volume 56 (2017) - Issue 1 (January 2017)
Page range: 67 - 76
Received: 01 Jun 2016
Accepted: 01 Oct 2016
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Abstract

Anaerobic Bacteroides species are dominant microbiota of the digestive tract of mammals. Along with other symbiotic bacteria located in the gastrointestinal tract, they contribute to the proper functioning of the organism. Some Bacteroides species are highly pathogenic. Virulence of these bacteria is related to their polysaccharide capsule, lipopolysaccharide and a variety of enzymes and enterotoxin. In recent years, an increase of antibiotic resistance in Bacteroides spp. has been noted, therefore the changes to the antibiotic resistance patterns in these bacteria should be monitored. This study summarizes the current knowledge about the bacteria of Bacteroides species.

1. Introduction. 2. Taxonomy of Bacteroides species. 3. Clinical significance of Bacteroides spp. 4. Antibiotic resistance. 4.1. Bacteroides species as a reservoir of antimicrobial resistance determinants. 4.2. Antimicrobial resistance. 5. Methods of drug resistance determination. 6. Summary

1. Wstęp. 2. Systematyka bakterii z rodzaju Bacteroides. 3. Znaczenie kliniczne Bacteroides spp. 4. Oporność na leki u Bacteroides spp. 4.1. Bakterie z rodzaju Bacteroides jako rezerwuar determinantów oporności. 4.2. Oporność na środki przeciwdrobnoustrojowe. 5. Metody określania lekowrażliwości. 6. Podsumowanie

Słowa kluczowe

Key words

Ayala J., Quesada A., Vadillo S., Criado J. Píriz S.: Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J. Med. Microbiol. 54, 1055–1064 (2005)Search in Google Scholar

Baron E.J., Allen S.D.: Should clinical laboratories adopt new taxonomic changes? If so, when? Clin. Infect. Dis. 16, 449–450 (1993)Search in Google Scholar

Bartha N.A., Soki J., Edit U., Nagy E.: Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int. J. Antimicrob. Agents, 38, 522–525 (2011)10.1016/j.ijantimicag.2011.07.010Search in Google Scholar

Boyanova L., Kolarov R., Mitov I.: Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe, 31, 4–10 (2015)10.1016/j.anaerobe.2014.05.004Search in Google Scholar

Britz M.L., Wilkinson R.G.: Chloramphenicol acetyl-transferase of Bacteroides fragilis. Antimicrob. Agents Chemother. 14, 105–111 (1978)10.1128/AAC.14.1.105Search in Google Scholar

Brook I., Wexler H.M., Goldstein E.J.: Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin. Microbiol. Rev. 26, 526–546 (2013)Search in Google Scholar

Bryan L.E., Kowand S.K., Van Den Elzen H.M.: Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob. Agents Chemother. 15, 7–13 (1979)10.1128/AAC.15.1.7Search in Google Scholar

Chaudhry R., Mathur P., Dhawan B., Kumar L.: Emergence of metronidazole-resistant Bacteroides fragilis, India. Emerg. Infect. Dis. 7, 485–486 (2001)Search in Google Scholar

Cisneros J. M., Rodriguez-Bano J., Fernandez-Cuenca F., Ribera A., Vila J., Pascual A., Martinez-Martinez L., Bou G., Pachon J.: Risk-factors for the acquisition of imipenem-resistant Acinetobacter Baumannie in Spain: a nationwide study. Clin. Microbiol. Infect. 11, 874–879 (2005)Search in Google Scholar

Wayne P.A.: Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard. CLSI publication number M11-A7. Clinical and Laboratory Standards Institute, 2007Search in Google Scholar

Edwards R.: Resistance to beta-lactam antibiotics in Bacteroides spp. J. Med. Microbiol. 46, 979–986 (1997)Search in Google Scholar

Eisen J.A.: Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Bio. 5, 82 (2007)10.1371/journal.pbio.0050082Search in Google Scholar

Eitel Z., Soki J., Urban E., Nagy E.: The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe, 21, 43–49 (2013)10.1016/j.anaerobe.2013.03.001Search in Google Scholar

Engberg J., Neimann J., Nielsen E.M., Aerestrup F.M., Fussing V.: Quinolone-resistant Campylobacter infections: risk factors and clinical consequences. Emerg. Infect. Dis. 10, 1056–1063 (2004)Search in Google Scholar

EUCAST Website, http://www.eucast.org (21 czerwca 2016 roku)Search in Google Scholar

Falagas M.E., Siakavellas E.: Bacteroides, Pre votella, and Porphy ro monas species: a review of antibiotic resistance and therapeutic options. Int. J. Antimicrob. Agents, 15, 1–9 (2000)10.1016/S0924-8579(99)00164-8Search in Google Scholar

Fang H., Edlund C., Nord C.E., Hedberg M.: Selection of cefoxitin-resistant Bacteroides thetaiotaomicron mutants and mechanisms involved in beta-lactam resistance. Clin. Infect. Dis. 35, 47–53 (2002)Search in Google Scholar

Gal M., Brazier J.S.: Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole resistant mutants. J. Antimicrob. Chemother. 54, 109–116 (2004)Search in Google Scholar

Georgopapadakou N.H., Smith S.A., Sykes R.B.: Penicillin binding proteins in Bacteroides fragilis. J. Antibiot. 36, 907–910 (1983)10.7164/antibiotics.36.907Search in Google Scholar

Gillespie W.A., Guy J.: Bacteroides in intra-abdominal sepsis. Lancet, 270, 1039–1041 (1956)10.1016/S0140-6736(56)90802-9Search in Google Scholar

Goh B.K., Alkouder G., Lama T.K., Tan C.E.: Multi-drug resistant Acinetobacter baumannii intra-abdominal abscess. Surg. Infect. 6, 345–347 (2005)Search in Google Scholar

Gootz T.D. The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. Biochem. Pharmacol. 71, 1073–1084 (2006)10.1016/j.bcp.2005.11.00616359640Search in Google Scholar

Haggoud A., Reysset G., Azeddoug H., Sebald M.: Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrob. Agents Chemother. 38, 1047–1051 (1994)10.1128/AAC.38.5.10471881488067736Search in Google Scholar

Hartmeyer G.N., Sóki J., Nagy E., Justesen U.S.: Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J. Med. Microbiol. 61, 1784–1788 (2012)Search in Google Scholar

Hecht D.W.: Anaerobes: antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe, 12, 115–121 (2006)10.1016/j.anaerobe.2005.10.00416765857Search in Google Scholar

Hu Y., Meng, Z. i wsp.: Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nature Com. 4 (2013)10.1038/ncomms315123877117Search in Google Scholar

Jain R., Danziger L.H.: Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann. Pharmacother. 38, 1449–1459 (2004)10.1345/aph.1D59215280512Search in Google Scholar

Kato N., Yamazoe K., Han C-G., Ohtsubo E.: New insertion sequence elements inthe upstream region of cfi A in imipenem-resistant Bacteroides fragilis strains. Antimicrob. Agents. Chemother. 47, 979–985 (2003)Search in Google Scholar

Kierzkowska M., Majewska A., Sawicka-Grzelak A., Młynarczyk G.: Pałeczki Grpm-ujemne beztlenowo rosnące – diagnostyka i znaczenie kliniczne. Post. Mikrobiol. 55, 91–98 (2016)Search in Google Scholar

Kim J.M., Lee J.Y., Yoon Y.M., Oh Y.K., Kang J.S., Kim Y.J., Kim K.H.: Bacteroides fragilis enterotoxin induces cyclooxygenase-2 and fluid secretion in intestinal epithelial cells through NF-kappa B activation. Eur. J. Immunol. 36, 2446–2456 (2006)Search in Google Scholar

Kislak J.W.: The susceptibility of Bacteroides fragilis to 24 antibiotics. J. Infect. Dis. 125, 295–298 (1972)Search in Google Scholar

Krieg NR, Ludwig W, Euze’by JP, Whitman WB. Phylum XIV. Bacteroidetes phyl. nov. (w) Bergey’s Manual of Systematic Bacteriology, red. W. Whitman, Springer, New York, 2011, s. 25–4110.1007/978-0-387-68572-4_3Search in Google Scholar

Lacombe-Antoneli A., Píriz S., Vadillo S.: In vitro antimicrobial susceptibility of anaerobic bacteria isolated from caprine footrot. Acta Vet. Hung. 55, 11–20 (2007)Search in Google Scholar

Leng Z., Riley D.E., Berger R.E., Krieger J.N., Roberts M.C.: Distribution and mobility of the tetracycline resistance determinant tet Q. J. Antimicrob. Chemother. 40, 551–559 (1997)Search in Google Scholar

Livermore D.M., Woodford N.: Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3, 489–495 (2000)Search in Google Scholar

Lofmark S., Fang H., Hedberg M., Edlund C.: Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob. Agents Chemother. 49, 1253–1256 (2005)10.1128/AAC.49.3.1253-1256.200554925015728943Search in Google Scholar

Lorenzo M., Garcia N., Alfonso Ayala J., Vadillo S., Píriz S., Quesada A.: Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot, Vet. Microbiology, 157, 112–118 (2012)Search in Google Scholar

Miyamae S., Nikaido H., Tanaka Y., Yoshimura F.: Active Efflu of norfloxacin by Bacteroides fragilis. Antimicrob. Agents Chemother. 42, 2119–2121 (1998)10.1128/AAC.42.8.21191058809687419Search in Google Scholar

Miyamae S., Ueda O., Yoshimura F., Hwang J., Tanaka Y., Nikaido H.: A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 45, 3341–3346 (2001)10.1128/AAC.45.12.3341-3346.20019083511709306Search in Google Scholar

Nagy E., Justesen U.S., Eitel Z., Urbán E.: Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe, 31, 65–71 (2015)10.1016/j.anaerobe.2014.10.00825464140Search in Google Scholar

Nagy E., Urban E., Nord C.E.: Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin. Microbiol. Infec. 17, 371–379 (2011)10.1111/j.1469-0691.2010.03256.x20456453Search in Google Scholar

Nikonorow E., Baraniak A., Gniadkowski M.: Oporność bakterii z rodziny Enterobacteriaceae na antybiotyki β-laktamowe wynikająca z wytwarzania β-laktamaz. Post. Mikrobiol. 52, 261–271 (2013)Search in Google Scholar

Ogawa W., Li D.W., Yu P., Begum A., Mizushima T., Kuroda T., Tsuchiya T.: Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol. Pharm. Bull. 28, 1505–1508 (2005)Search in Google Scholar

Oh H., El Amin N., Davies T., Appelbaum P.C., Edlund C.: gyr A mutations associated with quinolone resistance in Bacteroides fragilis group strains. Antimicrob. Agents Chemother. 45, 1977–1981 (2001)10.1128/AAC.45.7.1977-1981.2001Search in Google Scholar

Papaparaskevas J., Katsandri A., Pantazatou A., Stefanou I., Avlamis A., Legakis N., Tsakris A.: Epidemiological characteristics of infections caused by Bacteroides, Prevotella and Fusobacterium species: A prospective observational study. Anaerobe, 17, 113–117 (2011)10.1016/j.anaerobe.2011.05.013Search in Google Scholar

Parija S.C.: Textbook of microbiology and immunology. Elsevier Health Sciences, New Delhi, 2014Search in Google Scholar

Piddock L.J.V. Multidrug-resistance efflux pumps – not just for resistance, Nature Rev. Microbiol. 4, 629–636 (2006)Search in Google Scholar

Piddock L.J.V., Wise R.: Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreased susceptibility. J. Antimicrob. Chemother. 19, 161–170 (1987)10.1093/jac/19.2.161Search in Google Scholar

Píriz S., Vadillo S., Quesada A., Criado J., Cerrato R., Ayala J.: Relationship between penicillin-binding protein patterns and beta-lactamases in clinical isolates of Bacteroides fragilis with different susceptibility to beta-lactam antibiotics. J. Med. Microbiol. 53, 213–221 (2004)Search in Google Scholar

Pumbwe L., Wareham D.W., Aduse-Opoku J., Brazier J.S., Wexler H.M.: Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin. Microbiol. Infect. 13, 183–189 (2007)Search in Google Scholar

Ricci V., Peterson M.L., Rotschafer J.C., Wexler H., Piddock L.J.: Role of topoisomerase mutations and efflux in fluoroquinolone resistance of Bacteroides fragilis clinical isolates and laboratory mutants. Antimicrob. Agents Chemother. 48, 1344–1346 (2004)10.1128/AAC.48.4.1344-1346.2004Search in Google Scholar

Roberts M.C.: Update on acquired tetracycline resistant genes. FEMS Microbiol. Lett. 245, 195–203 (2005)Search in Google Scholar

Rogers M.B., Parker A.C., Smith C.J.: Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob. Agents Chemother. 37, 2391–2400 (1993)10.1128/AAC.37.11.2391Search in Google Scholar

Sachs J.: Are antibiotics killing us? Discover, 26, 36 (2005)Search in Google Scholar

Sakamoto M., Benno Y.: Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int. J. Syst. Evol. Microbiol. 56, 1599–1605 (2006)10.1099/ijs.0.64192-0Search in Google Scholar

Sakamoto M., Tanaka Y., Benno Y., Ohkuma M.: Parabacteroides faecis sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 65, 1342–1346 (2015)Search in Google Scholar

Salyers A.A., Amabile-Cuevas C.F.: Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41, 2321–2325 (1997)10.1128/AAC.41.11.2321Search in Google Scholar

Sears C.L. The toxins of Bacteroides fragilis. Toxicon, 39, 1737– 1746 (2001)10.1016/S0041-0101(01)00160-XSearch in Google Scholar

Shoemaker N.B., Vlamakis H., Hayes K., Salyers A.A.: Evidence for extensive resistance gene transfer among Bacteroides spp. And among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67, 561–568 (2001)Search in Google Scholar

Snydman D.R., Gorbach S.L., I wsp.: In vitro activities of newer quinolones against Bacteroides group organisms. Antimicrob. Agents Chemother. 46, 3276–3279 (2002)10.1128/AAC.46.10.3276-3279.200212876312234859Search in Google Scholar

Snydman D.R., Gorbach S.L., I wsp.: National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004. Antimicrob. Agents Chemother. 51, 1649–1655 (2007)10.1128/AAC.01435-06185553217283189Search in Google Scholar

Snydman D.R., Hecht D.W. i wsp.: Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006–2009. Anaerobe, 17, 147–151 (2011)10.1016/j.anaerobe.2011.05.01421664469Search in Google Scholar

Sóki J., Hedberg M., Patrick S., Bálint B., Herczeg R., Nagy I., Hecht D.W., Nagy E., Urbán E.: Emergence and evolution of an international cluster of MDR Bacteroides fragilis isolates. J. Antimicrob. Chemother. 71, 2441–2448 (2016)Search in Google Scholar

Sóki J.: Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World J. Clin. Infect. Dis. 3, 1–12 (2013)Search in Google Scholar

Sutter V.L., Citron D.M., Edelstein M.A.C., Finegold S.M.: Wadsworth anaerobic bacteriology manual, 4th ed. Star Publishing Co., Belmont, 1985Search in Google Scholar

Székely E., Eitel Z., Molnár S., Szász I.É., Bilca D., Sóki J.: Analysis of Romanian Bacteroides isolates for antibiotic resistance levels and the corresponding antibiotic resistance genes. Anaerobe, 31, 11–14 (2015)10.1016/j.anaerobe.2014.09.00125218409Search in Google Scholar

Toprak N.U., Yagci A., Gulluoglu B.M., Akin M.L., Demirkalem P., Celenk T., Soyletir G.: A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12, 782–786 (2006)Search in Google Scholar

Vedantam G., Hecht D.W.: Antibiotics and anaerobes of gut origin. Curr. Opin. Microbiol. 6, 457–461 (2003)Search in Google Scholar

Wareham D.W., Wilks M., Ahmed D., Brazier J.S., Millar M.: Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. 40, 67–68 (2005)Search in Google Scholar

Weintraub A., Larsson B.E., Lindberg A.A.: Chemical and immunochemical analyses of Bacteroides fragilis lipopolysaccharides. Infect. Immun. 49, 197–201 (1985)Search in Google Scholar

Wexler H.M.: Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007)Search in Google Scholar

Whittle G., Hund B.D., Shoemaker N.B., Salyers A.A.: Characterisation of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl. Environ. Microbiol. 67, 3488–3495 (2001)Search in Google Scholar

Wu S., Lim K.C., Huang J., Saidi R.F., Sears C.L.: Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA, 95, 14979–14984 (1998)10.1073/pnas.95.25.14979245619844001Search in Google Scholar

Yang W., Moore I.F., Koteva K.P., Bareich D.C., Hughes D.W., Wright G.D.: TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279, 52346–52352 (2004)Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo