1. bookVolume 56 (2017): Issue 1 (January 2017)
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
access type Open Access

Fructophilic lactic acid bacteria (FLAB) – a new group of heterofermentative microorganisms from the plant environment

Published Online: 01 Apr 2017
Volume & Issue: Volume 56 (2017) - Issue 1 (January 2017)
Page range: 56 - 66
Received: 01 Jun 2016
Accepted: 01 Sep 2016
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Abstract

Recently, a unique kind of lactic acid bacteria (LAB) i.e. fructophilic lactic acid bacteria (FLAB), has been described. This specific group prefers D-fructose over D-glucose as a carbon source to growth. They can be found in fructose rich environments such as flowers, fruits and food products made of fermented fruits, for example tempoyak. In recent years, it has been revealed that insects which feed on food high in fructose are an abundant source of fructophilic bacteria. Bacterial communities inhabiting intestinal tracts of honeybees, bumblebees, Camponotus ants and tropical fruit flies were examined. At present FLAB includes six species: Fructobacillus fructosus, Fructobacillus durionis, Fructobacillus ficulneus, Fructobacillus pseudoficulneus, Fructobacillus tropaeoli and Lactobacillus kunkeei classified by Endo as obligatorily fructophilic, and only one species, namely Lactobacillus florum, as facultatively fructophilic. Latest publications describe new species of potential fructophilic characteristics, which suggests that there is still much to discover in that group.

1. Introduction. 2. Occurrence / Habitat. 3. Morphological characteristics of FLAB. 4. Physiological characteristics of FLAB. 5. Biochemical properties of FLAB. 6. Philogenetics. 7. Characterization of selected species of the genus Fructobacillus. 7.1. Fructobacillus fructosus. 7.2. Fructobacillus ficulneus. 7.3. Fructobacillus durionis. 7.4. Fructobacillus psedoficulneus. 7.5. Fructobacillus tropaeoli. 7.6. Lactobacillus kunkeei. 7.7. Lactobacillus florum. 8. Summary

1. Wstęp. 2. Występowanie. 3. Cechy morfologiczne FLAB. 4. Cechy fizjologiczne FLAB. 5. Właściwości biochemiczne FLAB. 6. Filogenetyka. 7. Krótka charakterystyka wybranych gatunków z rodzaju Fructobacillus. 7.1. Fructobacillus fructosus. 7.2. Fructobacillus ficulneus. 7.3. Fructobacillus durionis. 7.4. Fructobacillus psedoficulneus. 7.5. Fructobacillus tropaeoli. 7.6. Lactobacillus kunkeei. 7.7. Lactobacillus florum. 8. Podsumowanie

Key words

Słowa kluczowe

Akinterinwa O., Khankal R., Cirino P.C.: Metabolic engineering for bioproduction of sugar alcohols. Curr. Op. Biotechnol. 19, 461–467 (2008)Search in Google Scholar

Antunes A., Rainey F.A., Nobre M.F., Schumann P., Ferreira A.M., Ramos A., Santos H., da Costa M.S.: Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int. J. Syst. Evol. Micr. 52, 647–655 (2002)10.1099/00207713-52-2-64711931179Search in Google Scholar

Axelsson L.: Lactic acid bacteria: classification and physiology (w) Lactic Acid Bacteria. red. S. Salminen, A. von Wright, A. Ouwehand, Marcel Dekker Inc., New York, 1993, s. 1–6310.1201/b11503-2Search in Google Scholar

Azcarate-Peril M.A., Klaenhammer T.R.: Genomics of lactic acid bacteria: The post-genomics challenge – from sequence to function (w) Biotechnology of lactic acid bacteria: Novel Applications. red. F. Mozzi, R.R. Raya, G.M. Vignolo, Wiley-Blackwell, Hoboken, 2010, s. 32–54Search in Google Scholar

Chambel L., Chelo I.M., Ze’-Ze’ L., Pedro L.G., Santos M.A., Tenreiro R.: Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int. J. Syst. Evol. Micr. 56, 1375–1381 (2006)Search in Google Scholar

Chelo I.M., Zé-Zé L., Tenreiro R.: Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int. J. Syst. Evol. Micr. 57, 276–286 (2007)10.1099/ijs.0.64468-017267964Search in Google Scholar

Davis C.R., Wibowo D., Eschenbruch R., Lee T.H., Fleet G.H.: Practical implications of malolactic fermentation: a review. Am. J. Enol. Viticult. 36, 290–301 (1985)Search in Google Scholar

De Bruyne K., Schillinger U., Caroline L., Boehringer B., Cleenwerck I., Vancanneyt M., De Vuyst L., Franz C.M.A.P., Vandamme P.: Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int. J. Syst. Evol. Micr. 57, 2952–2959 (2007)10.1099/ijs.0.65292-018048756Search in Google Scholar

Edwards C.G., Haag K.M., Collins M.D., Hutson R.A., Huang Y.C.: Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J. Appl. Microbiol. 84, 698–702 (1998)10.1046/j.1365-2672.1998.00399.x9674120Search in Google Scholar

Endo A., Futagawa-Endo Y., Dicks L.M.T.: Isolation and characterization of fructophilic lactic acid bacteria from fructoserich niches. Syst. Appl. Microbiol. 32, 593–600 (2009)Search in Google Scholar

Endo A., Irisawa T., Futagawa-Endo Y., Takano K., du Toit M., Okada S., Dicks L.M.: Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int. J. Syst. Evol. Micr. 62, 500–504 (2012)Search in Google Scholar

Endo A., Okada S.: Reclassification of the genus Leuconostoc, and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int. J. Syst. Evol. Micr. 58, 2195–2205 (2008)10.1099/ijs.0.65609-018768629Search in Google Scholar

Endo A., Dicks L.M.T.: The genus Fructobacillus. Lactic acid bacteria biodiversity and taxonomy (w) Lactic acid bacteria: biodiversity and taxonomy. red. H.W. Holzapfel, B.J.B. Wood, Wiley-Blackwell, Hoboken, 2014, s. 381–385Search in Google Scholar

Endo A.: Fructophilic lactic acid bacteria inhabit fructose-rich niches in nature. Microb. Ecol. Health D., DOI: 10.3402/mehd. v23i0.18563. (2012)Search in Google Scholar

Endo A., Salminen S.: Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst. Appl. Microbiol. 36, 444–448 (2013)Search in Google Scholar

Endo A., Futagawa-Endo Y., Dicks L.M.T.: Influence of carbohydrates on the isolation of lactic acid bacteria. J. Appl. Microbiol. 110, 1085–1092 (2011)Search in Google Scholar

Endo A., Futagawa-Endo Y., Sakamoto M., Kitahara M., Dicks L.M.: Lactobacillus florum sp. nov., a fructophilic species isolated from flowers. Int. J. Syst. Evol. Micr. 60, 2478–2482 (2010)Search in Google Scholar

Endo A., Irisawa T., Futagawa-Endo,Y., Sonomoto K., Itoh K., Takano K., Okada S., Dicks L.M.T.: Fructobacillus tropaeoli sp. nov., a novel fructophilic lactic acid bacterium isolated from a flower. Int. J. Syst. Evol. Micr. 61, 898–902 (2011)Search in Google Scholar

Endo A., Tanaka N., Oikawa Y., Okada S., Dicks L.: Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr. Microbiol. 68, 531–535 (2014)Search in Google Scholar

Fuhrman J.A.: Microbial community structure and its functional implications. Nature, 459, 193–199 (2009)10.1038/nature0805819444205Search in Google Scholar

Gajewska J., Blaszczyk M.K.: Probiotyczne bakterie fermentacji mlekowej (LAB). Post. Mikrobiol. 51, 55–65 (2012)Search in Google Scholar

Gruter C., Moore H., Firmin N., Helantera H., Ratnieks F.L.: Flower constancy in honey bee workers (Apis mellifera) depends on ecologically realistic rewards. J. Exp. Biol. 214, 1397–1402 (2011)Search in Google Scholar

Hammes W.P., Hertel C.: The genera Lactobacillus and Carnobacterium. (w) The Prokaryotes. red. M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt, Springer, New York, 2006, s. 320–40310.1007/0-387-30744-3_10Search in Google Scholar

He H., Chen Y., Zhang Y., Wei C.: Bacteria associated with gut lumen of Camponotus japonicus Mayr. Environ. Entomol. 40, 1405–1409, (2011)10.1603/EN1115722217755Search in Google Scholar

Herrera C.M., Garcia I.M., Perez R.: Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology, 89, 2369–2376 (2008)10.1890/08-0241.118831156Search in Google Scholar

Herrera C.M., Pozo M.I.: Nectar yeasts warm the flowers of a winter-blooming plant. P. Roy. Soc. Lond. B. Bio. 277, 1827– 1834 (2010)Search in Google Scholar

Klaenhammer T.R., Altermann E., Pfeiler E., Buck B.L., Goh Y.J., O’Flaherty S., Barrangou R., Duong T.: Functional genomics of probiotic Lactobacilli. J. Clin. Gastroenterol. 42, 160–162 (2008)Search in Google Scholar

Kodama R.: Lactobacillus fructosus nov. sp., a new species of lactic acid bacteria. Studies on the nutrition of lactic acid bacteria. J. Agric. Chem. Soc. Jpn. 30,705–708 (1956)Search in Google Scholar

Koo O.K., Jeong D.W., Lee J.M, Kim M.J., Lee J-H., Chang H.C., Kim J.H., Lee H.J.: Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol. Lett. 27, 505–510 (2005)Search in Google Scholar

Lefeber T., Gobert W., Vrancken G., Camu N., De Vuyst L.: Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiol. 28, 457–464 (2011)10.1016/j.fm.2010.10.01021356451Search in Google Scholar

Leisner J.J., Vancanneyt M. i wsp.: Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int. J. Syst. Evol. Micr. 55, 1267–1270 (2005)Search in Google Scholar

Makarova K., Slesarev A., i wsp.: Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA, 42, 15611–15616 (2006)10.1073/pnas.0607117103162287017030793Search in Google Scholar

Makarova K.S., Koonin E.V.: Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189, 1199–1208 (2007)10.1128/JB.01351-06179734117085562Search in Google Scholar

Marri P.R., Hao W., Golding G.B.: Gene gain and gene loss in streptococcus: is it driven by habitat? Mol. Biol. Evol. 23, 2379–2391 (2006)Search in Google Scholar

Moran N.A., Hansen A.K., Powell J.E., Sabree Z.L.: Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One, 7, e36393 (2012)10.1371/journal.pone.0036393333866722558460Search in Google Scholar

Mtshali P.S., Divol B., Du Toit M.: Identification and characterization of Lactobacillus florum strains isolated from South African grape and wine samples. Int. J. Food Microbiol. 153, 106–113 (2012)10.1016/j.ijfoodmicro.2011.10.02322137250Search in Google Scholar

Nielsen D.S., Teniola O.D., Ban-Koffi L., Owusu M., Andersson T.S., Holzapfel W.H.: The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and cultureindependent methods. Int. J. Food Microbiol. 114, 168–186, (2007)10.1016/j.ijfoodmicro.2006.09.01017161485Search in Google Scholar

Nuraida L., Grigolava I., Owens J.D., Campbell-Platt G.: Oxygen and pyruvate as external electron acceptors for Leuconostoc spp. J. Appl. Bacteriol. 72, 517–522, (1992)10.1111/j.1365-2672.1992.tb01869.xSearch in Google Scholar

Papalexandratou Z., Falony G., Romanens E., Jimenez J.C., Amores F., Daniel H.M., De Vuyst L.: Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations. Appl. Environ. Microbiol. 77, 7698–7714 (2011)Search in Google Scholar

Rachman C.N., Kabadjova H., Prévost H., Dousset X.: Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S-23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide. J. Appl. Microbiol. 95, 1207–1216 (2003)10.1046/j.1365-2672.2003.02117.x14632993Search in Google Scholar

Thaochan N., Drew R.A., Hughes J.M., Vijaysegaran S., Chinajariyawong A.: Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 1–16 (2010)10.1673/031.010.13101301691720883132Search in Google Scholar

Vannette R.L., Gauthier M.P.L., Fukami T. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. P. Roy. Soc. Lond. B. Bio. 280, DOI: 10.1098/rspb.2012.2601 (2012)10.1098/rspb.2012.2601357431623222453Search in Google Scholar

Whitman W.B., Coleman D.C., Wiebe W.J. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA, 95, 6578–6583 (1998)10.1073/pnas.95.12.6578338639618454Search in Google Scholar

Zavaleta A.I., Martinez-Murcia A.J., Rodriguez-Valera F.: 16S-23S rDNA intergenic sequences indicate that Leuconostoc oenos is phylogenetically homogeneous. Microbiology, 142, 2102–2114 (1996)10.1099/13500872-142-8-21058760923Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo