1. bookVolume 56 (2017): Issue 1 (January 2017)
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Open Access

Application of the bacterial outer membrane vesicles in vaccine design

Published Online: 21 May 2019
Volume & Issue: Volume 56 (2017) - Issue 1 (January 2017)
Page range: 43 - 55
Received: 01 Jun 2016
Accepted: 01 Sep 2016
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Abstract

Outer membrane vesicles (OMVs) are extracellular structures produced by most gram-negative bacteria, including pathogens of humans and animals. OMVs play an important role in the physiology of microorganisms and are an integral part of many biological processes. Following the discovery that they are able to transport many biomolecules, also these which have the ability to interact with the immune system, their potential use as non-replicating vaccines has become an important aspect of immunotherapeutic researches. These nano-sized elements exhibit remarkable potential for immunomodulation of immune response, thanks to the ability to deliver naturally or artificially incorporated antigens within their structure. First vaccine based on outer membrane vesicles was developed almost 30 years ago against Neisseria meningitidis serogroup B. This review presents some basic information on biogenesis and functions of OMVs. It also provides examples of pathogens, whose OMVs (in natural or modified form) have been used in the development of immunogenic vaccines against the organisms from which the vesicles had been obtained. OMVs are proving to be more versatile than first conceived and may become important part of biotechnology research, not limited to medical applications.

1. Introduction. 2. Outer membrane vesicles biogenesis. 3. Biological functions of outer membrane vesicles. 3.1. Role in response to stressors. 3.2. Role in the extracellular transport. 3.3. Role in biofilm formation. 4. OMVs in vaccine construction. 4.1. Neisseria meningitidis. 4.2. Vibrio cholerae. 4.3. Bordetella pertussis. 4.4. Chlamydia trachomatis. 4.5. Burkholderia pseudomallei. 4.6. Acinetobacter baumannii. 4.7. Francisella noatunensis. 4.8. Shigella spp. 4.9. Campylobacter jejuni. 5. Conclusions

1. Wprowadzenie. 2. Biogeneza pęcherzyków zewnątrzbłonowych. 3. Funkcje pęcherzyków zewnątrzkomórkowych. 3.1. Udział w odpowiedzi na czynniki stresogenne. 3.2. Udział w transporcie pozakomórkowym. 3.3. Udział w tworzeniu biofilmu. 4. Pęcherzyki zewnątrzbłonowe w konstrukcji szczepionek. 4.1. Neisseria meningitidis. 4.2. Vibrio cholerae. 4.3. Bordetella pertussis. 4.4. Chlamydia trachomatis. 4.5. Burkholderia pseudomallei. 4.6. Acineto bacter baumannii. 4.7. Francisella noatunensis. 4.8. Shigella spp. 4.9. Campylobacter jejuni. 5. Podsumowanie

Key words

Słowa kluczowe

Acevedo R., Fernández S., Zayas C., Acosta A., Sarmiento M.E., Ferro V.A.: Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, DOI: 10.3389/fimmu.2014.00121 (2014)10.3389/fimmu.2014.00121397002924715891Search in Google Scholar

Bai X., Findlow J., Borrow R.: Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opin. Biol. Ther. 11, 969–985 (2011)Search in Google Scholar

Baker J.L., Chen L., Rosenthal J.A., Putnam D., DeLisa M.P.: Microbial biosynthesis of designer outer membrane vesicles. Curr. Opin. Biotechnol. 29, 76–84 (2014)Search in Google Scholar

Bartolini E., Ianni E., Frigimelica E., Petracca R.: Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles. 2, DOI: 10.3402/jev.v2i0.20181 (2013)10.3402/jev.v2i0.20181376063724009891Search in Google Scholar

Bauman S.J., Kuehn M.J.: Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 8, 2400–2408 (2006)10.1016/j.micinf.2006.05.001352549416807039Search in Google Scholar

Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L., Heipieper H.: Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 78, 6217–6224 (2012)10.1128/AEM.01525-12341662122752175Search in Google Scholar

Beveridge T.J.: Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999)10.1128/JB.181.16.4725-4733.19999395410438737Search in Google Scholar

Bomberger J.M., MacEachran D.P., Coutermarsh B.A., Ye S., O’Toole G.A., Stanton B.A.: Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5, DOI: 10.1371/journal.ppat.1000382 (2009)10.1371/journal.ppat.1000382266102419360133Search in Google Scholar

Brudal E., Lampe E., Reubsaet L., Roos N., Hegna I., Thrane I., Koppang E., Winther-Larsen H.C.: Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. Fish Shellfish Immunol. 42, 50–57 (2015)10.1016/j.fsi.2014.10.02525449706Search in Google Scholar

Brudeseth B.E., Wiulsrød R., Fredriksen B.N., Lindmo K., Løkling K.E., Bordevik M.: Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 35, 1759–1768 (2013)10.1016/j.fsi.2013.05.02923769873Search in Google Scholar

Chatterjee S. N., Chaudhuri K.: Lipopolysaccharides of Vibrio cholerae. Physical and chemical characterization. Biochim. Biophys. Acta, 1639, 65–79 (2003)Search in Google Scholar

Clausen T., Southan C., Ehrmann M.: The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell. 10, 443–455 (2002)Search in Google Scholar

Collins B.S.: Gram-negative outer membrane vesicles in vaccine development. Discov. Med. 12, 7–15 (2011)Search in Google Scholar

Daczkowska-Kozon E.: Kampylobakterioza – możliwe źródła infekcji. Folia Univ. Agric. Stetin. Scientia Alimentaria, 238, 21–28 (2004)Search in Google Scholar

De S.N.: Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature, 183, 1533–1534 (1959)10.1038/1831533a013666809Search in Google Scholar

Deatherage B.L., Lara J.C., Bergsbaken T., Rassoulian Barrett S.L., Lara S., Cookson B.T.: Biogenesis of bacterial membrane vesicles. Mol. Microbiol. 72, 1395–1407 (2009)Search in Google Scholar

Delbos V., Lemée L., Bénichou J., Berthelot G., Deghmane A.E., Leroy J.P., Houivet E., Hong E., Taha M.K., Caron F.: Impact of MenBvac, an outer membrane vesicle (OMV) vaccine, on the meningococcal carriage. Vaccine, 31, 4416–4420 (2013)10.1016/j.vaccine.2013.06.08023856330Search in Google Scholar

Ellen A.F., Albers S.V., Huibers W., Pitcher A., Hobel C.F., Schwarz H., Folea M., Schouten S., Boekema E.J., Poolman B.: Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles, 13, 67–79 (2009)10.1007/s00792-008-0199-xSearch in Google Scholar

Elmi A., Dorrell N. i wsp.: Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect. Immun. 80, 4089–4098 (2012)Search in Google Scholar

Fernández S., Fajardo E.M., Mandiarote A., Año G., Padrón M.A., Acosta M.: A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models. BMC Immunol. 14, DOI: 10.1186/1471-2172-14-S1-S8 (2013)10.1186/1471-2172-14-S1-S8Search in Google Scholar

Finco O., Frigimelica E., Buricchi F., Petracca R., Galli G.: Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc. Natl. Acad. Sci. USA, 108, 9969–9974 (2011)10.1073/pnas.1101756108Search in Google Scholar

Finne J., Leinonen M., Makela P.H.: Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet, 2, 355–357 (1983)10.1016/S0140-6736(83)90340-9Search in Google Scholar

Furuta N., Tsuda K., Omori H., Yoshimori T., Yoshimura F., Amano A.: Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. Infect. Immun. 77, 4187– 4196 (2009)Search in Google Scholar

Główny Inspektorat Sanitarny: Stan sanitarny kraju w roku 2014, http://gis.gov.pl/images/kafelki/stan_sanitarny_kraju.pdf (06.09.2016)Search in Google Scholar

Gurung M., Moon D.C., Choi C.W., Lee J.H., Bae Y.C., Kim J., Lee Y.C., Seol S.Y., Cho D.T., Kim S.I.: Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PloS One, 6, DOI: 10.1371/journal.pone.0027958 (2011)10.1371/journal.pone.0027958321807322114730Search in Google Scholar

Helms M., Simonsen J., Olsen K.E., Mølbak K.: Adverse health events associated with antimicrobial drug resistance in Campylobacter species: a registry-based cohort study. J. Infect. Dis. 191, 1050–1055 (2005)Search in Google Scholar

Holst J.D., Martin R., Campa C., Oster P., O’Hallahan J., Rosenqvist E.: Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine, 27, DOI: 10.1016/j.vaccine.2009.04.071 (2009)10.1016/j.vaccine.2009.04.07119481313Search in Google Scholar

Huang W., Yao Y., Long Q., Yang X., Sun W.: Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS One, 9, DOI: 10.1371/journal.pone.0100727 (2014)10.1371/journal.pone.0100727406735424956279Search in Google Scholar

Huntley J.F., Conley P.G., Hagman K.E., Norgard M.V.: Characterization of Francisella tularensis outer mambrane proteins. J. Bacteriol. 189, 561–574 (2007)10.1128/JB.01505-06179740117114266Search in Google Scholar

Jagusztyn-Krynicka E.K., Łaniewski P., Wyszyńska A.: Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert. Rev. Vaccines, 8, 625–645 (2009)Search in Google Scholar

Jang K.S., Sweredoski M.J., Graham R.L., Hess S., Clemons W.M.: Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni. J. Proteomics, 98, 90–98 (2014)10.1016/j.jprot.2013.12.014453400324382552Search in Google Scholar

Jun S.H., Lee J.H., Kim B.R., Kim S.I., Park T.I., Lee J.C., Lee Y.C.: Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins. PLoS One, 8, DOI: 10.1371/journal.pone.0071751 (2013)10.1371/journal.pone.0071751374374423977136Search in Google Scholar

Kaaijk P., van Straaten I., van de Waterbeemd B., Boot E.P., Levels L.M., van Dijken H.H., van den Dobbelsteen G.P.: Preclinical safety and immunogenicity evaluation of a nonavalent PorA native outer membrane vesicle vaccine against serogroup B meningococcal disease. Vaccine, 31, 1065–1071 (2013)10.1016/j.vaccine.2012.12.03123273968Search in Google Scholar

Kadurugamuwa J.L., Beveridge T.J.: Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other Gram-negative bacteria. Microbiology, 145, 2051–2060 (1999)10.1099/13500872-145-8-205110463171Search in Google Scholar

Kadurugamuwa J.L., Beveridge, T.J.: Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177, 3998–4008 (1995)10.1128/jb.177.14.3998-4008.19951771307608073Search in Google Scholar

Kahn M.E., Maul G., Goodgal S.H.: Possible mechanism for donor DNA binding and transport in Haemophilus. Proc. Natl. Acad. Sci. USA, 79, 6370–6374 (1982)10.1073/pnas.79.20.63703471236959125Search in Google Scholar

Kitagawa R., Takaya A., Ohya M., Mizunoe Y., Takade A., Yoshida S., Isogai E., Yamamoto T.: Biogenesis of Salmonella enterica serovar Typhimurium membrane vesicles provoked by induction of PagC. J. Bacteriol. 192, 5645–5656 (2010)10.1128/JB.00590-10295367820802043Search in Google Scholar

Klose K.: Regulation of virulence in Vibrio cholerae. Int. J. Med. Microbiol. 29, 81–88 (2001)10.1078/1438-4221-0010411437342Search in Google Scholar

Kłapeć T., Cholewa A.: Tularemia – wciąż groźna zoonoza. Medycyna Ogólna i Nauki o Zdrowiu, 17, 155–160 (2011)Search in Google Scholar

Knox K.W., Vesk M., Work E.: Relation between excreted lipopolysaccharide complexesand surface structures of a lysine limited culture of Escherichia coli. J. Bacteriol. 92, 1206–1217 (1966)10.1128/jb.92.4.1206-1217.19662763964959044Search in Google Scholar

Kulp A., Kuehn M.J.: Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010)10.1146/annurev.micro.091208.073413352546920825345Search in Google Scholar

Lee E.Y., Bang J.Y., Park G.W., Choi D.S., Kang J.S.: Global proteomic profiling of native outermembrane vesicles derived from Escherichia coli. Proteomics, 7, 3143–3153 (2007)10.1002/pmic.20070019617787032Search in Google Scholar

Locht C.: A common vaccination strategy to solve unsolved problems of tuberculosis and pertussis? Microbes Infect. 10, 1051–1056 (2008)10.1016/j.micinf.2008.07.00818672086Search in Google Scholar

Manning A.J., Kuehn M.J.: Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, DOI: 10.1186/1471-2180-11-258 (2011)10.1186/1471-2180-11-258324837722133164Search in Google Scholar

Manning A.J., Kuehn M.J.: Functional advantages conferred by extracellular prokaryotic membrane vesicles. J. Mol. Microbiol. Biotechnol. 23, 131–141 (2013)Search in Google Scholar

Mashburn L.M., Whiteley M.: Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature, 437, 422–425 (2005)10.1038/nature0392516163359Search in Google Scholar

McBroom A.J., Kuehn M.J.: Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545–558 (2007)Search in Google Scholar

Mitra S., Chakrabarti M.K., Koley H.: Multi-serotype outer membrane vesicles of Shigellae confer passive protection to the neonatal mice against shigellosis. Vaccine, 31, 3163–3173 (2013)10.1016/j.vaccine.2013.05.00123684822Search in Google Scholar

Nieves W., Asakrah S., Qazi O., Brown K.A., Kurtz J.: A naturally derived outer membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine, 29, 8381–8389 (2011)10.1016/j.vaccine.2011.08.058319586821871517Search in Google Scholar

Nieves W., Petersen H., Judy B.M., Blumentritt C.A., Russell-Lodrigue K., Roy C.J., Torres A.G., Morici L.A.: A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin. Vaccine Immunol. 21, 747–754 (2014)10.1128/CVI.00119-14401889224671550Search in Google Scholar

Norheim G., Tunheim G., Naess L.M., Bolstad K., Fjeldheim A.K., Garcia L.: A trivalent outer membrane vesicle (OMV) vaccine against serogroup A, W-135 and X meningococcal disease. XVIIIth International Pathogenic Neisseria Conference. Würzburg: Conventus Congress Management & Marketing GmbH (2012)10.1111/j.1365-3083.2012.02709.x22537024Search in Google Scholar

Panatto D., Amicizia D., Lai P.L., Cristina M.L., Domnich A., Gasparini R.: New versus old meningococcal Group B vaccines: How the new ones may benefit infants & toddlers. Indian J. Med. Res. 138, 835–846 (2013)Search in Google Scholar

Pawlikowska M., Deptuła W.: Swoista odporność humoralna a chlamydie i chlamydofile. Post. Hig. Med. Dosw. 15, 505–511 (2006)Search in Google Scholar

Perez J.L., Acevedo R., Callico A., Fernandez Y., Cedre B., Ano G.: A proteoliposome based formulation administered by the nasal route produces vibriocidal antibodies against El Tor Ogawa Vibrio cholerae O1 in BALB/c mice. Vaccine, 27, 205–212 (2009)10.1016/j.vaccine.2008.10.05218996426Search in Google Scholar

Pizza M., Scarlato V., Masignani V.: Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science, 287, 1816–1820 (2000)10.1126/science.287.5459.181610710308Search in Google Scholar

Rachel R., Wyschkony I., Riehl S., Huber H.: The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea, 1, 9–18 (2002)10.1155/2002/307480268554715803654Search in Google Scholar

Ram P.K., Crump J.A., Gupta S.K., Miller M.A., Mintz E.D.: Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol. Infect. 136, 577–603 (2008)Search in Google Scholar

Renelli M., Matias V., Lo R.Y., Beveridge T.J.: DNA containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology, 150, 2161–2169 (2004)10.1099/mic.0.26841-015256559Search in Google Scholar

Rivera J., Cordero R.J., Nakouzi A.S., Frases S., Nicola A., Casadevall A.: Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl. Acad. Sci. USA, 107, 19002–19007 (2010)10.1073/pnas.1008843107297386020956325Search in Google Scholar

Rosenthal J.A., Chen L., Baker J.L., Putnam D., DeLisa M.P.: Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr. Opin. Biotechnol. 28, 51–8 (2014)10.1016/j.copbio.2013.11.00524832075Search in Google Scholar

Rupali J., Danziger L.H.: Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann. Pharmacother. 38, 1449–1459 (2004)10.1345/aph.1D59215280512Search in Google Scholar

Sack D.A., Sack R.B., Chaignat C.L.: Getting serious about cholera. N. Engl. J. Med. 355, 649–651 (2006)Search in Google Scholar

Schaar V., Nordstrom T., Morgelin M., Riesbeck K.: Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 55, 3845–3853 (2011)10.1128/AAC.01772-10314765021576428Search in Google Scholar

Schild S., Nelson E.J., Camilli A.: Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect. Immun. 76, 4554–4563 (2008)Search in Google Scholar

Schooling S.R., Hubley A., Beveridge T.J.: Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191, 4097–4102 (2009)10.1128/JB.00717-08269848519429627Search in Google Scholar

Segal S., Pollard A.J.: Vaccines against bacterial meningitis. Br. Med. Bull. 72, 65–81 (2005)Search in Google Scholar

Serruto D., Bottomley M.J., Ram S.: The new multicomponent vaccine against meningococcal serogroup B, Bexsero®: immunological, functional and structural characterization of the antigens. Vaccine, 30, 87–97 (2012)10.1016/j.vaccine.2012.01.033336087722607904Search in Google Scholar

Sierra G., Campa H.C., Varcacel N.M., Izquierdo P.L., Sotolongo P.F., Garcia L.: Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann. 14, 195–210 (1991)Search in Google Scholar

Silva E.B., Dow S.W.: Development of Burkholderia mallei and Pseudomallei vaccines. Front. Cell. Infect. Microbiol. 3, DOI: 10.3389/fcimb.2013.00010 (2013)10.3389/fcimb.2013.00010359800623508691Search in Google Scholar

Silva J., Leite D., Fernandes M.: Campylobacter spp. as a foodborne pathogen: A Review. Front. Microbiol. 2, DOI: 10.3389/fmicb.2011.00200 (2011)10.3389/fmicb.2011.00200318064321991264Search in Google Scholar

Sinha R., Koley H., Nag D., Mitra S., Mukhopadhyay A.K., Chattopadhyay B.: Pentavalent outer membrane vesicles of Vibrio cholerae induce adaptive immune response and protective efficacy in both adult and passive suckling mice models. Microbes Infect. 17, 215–227 (2015)10.1016/j.micinf.2014.10.01125461799Search in Google Scholar

Sinha S., Langford P., Kroll J.: Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology, 150, 2993–3000 (2004)10.1099/mic.0.27216-015347757Search in Google Scholar

Tan L.K., Carlone G.M., Borrow R.: Advances in the development of vaccines against Neisseria meningitidis. N. Engl. J. Med. 362, 1511–1520 (2010)Search in Google Scholar

Tribble D.R., Baqar S., Carmolli M.P., Porter C.: Campylobacter jejuni strain CG8421: a refined model for the study of Campylobacteriosis and evaluation of Campylobacter vaccines in human subjects. Clin. Infect. Dis. 49, 1512–1519 (2009)Search in Google Scholar

Unal C.M., Schaar V., Riesbeck K.: Bacterial outer membrane vesicles in disease and preventive medicine. Semin. Immunopathol. 33, 395–408 (2011)10.1007/s00281-010-0231-y21153593Search in Google Scholar

van de Waterbeemd B., Streefland M., van der Ley P., Zomer B., van Dijken H.: Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine, 28, 4810–4816 (2010)10.1016/j.vaccine.2010.04.08220483197Search in Google Scholar

van der Ley P., Steeghs L., Hamstra H.J.: Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect. Immun. 69, 5981–5990 (2001)10.1128/IAI.69.10.5981-5990.20019872511553534Search in Google Scholar

Von Seidlein L., Kim D.R., Ali M., Lee H., Wang X.: A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med. 3, DOI: 10.1371/journal.pmed.0030353 (2006)10.1371/journal.pmed.0030353156417416968124Search in Google Scholar

Wiersinga W.J., Currie B.J., Peacock S.J.: Melioidosis. N. Engl. J. Med. 367, 1035–1044 (2012)Search in Google Scholar

Wyle F.A., Artenstein M.S., Brandt B.L.: Immunologic response of man to group B meningococcal polysaccharide vaccines. J. Infect. Dis. 126, 514–521 (1972)Search in Google Scholar

Yaron S., Kolling G.L., Simon L., Matthews K.R.: Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66, 4414–4420 (2000)Search in Google Scholar

Yonezawa H., Osaki T., Kurata S., Fukuda M., Kawakami H., Ochiai K., Hanawa T., Kamiya S.: Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 9, DOI: 10.1186/1471-2180-9-197 (2009)10.1186/1471-2180-9-197274905519751530Search in Google Scholar

Young K.T., Davis L.M., Dirita V.J.: Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5, 665–679 (2007)Search in Google Scholar

Zhou L., Srisatjaluk R., Justus D.E., Doyle R.J.: On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol. Lett. 163, 223–228 (1998)Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo