1. bookVolume 61 (2012): Issue 1-6 (December 2012)
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year
access type Open Access

Genetic diversity and differentiation of Chilean plantations of Pinus radiata D. Don using microsatellite DNA markers

Published Online: 01 Aug 2017
Volume & Issue: Volume 61 (2012) - Issue 1-6 (December 2012)
Page range: 221 - 228
Received: 23 Aug 2011
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year

Radiata pine (Pinus radiata D. Don) is the most important tree species in Chilean forest economy that was introduced to the country in 1892. Despite its economical end ecological relevance, no information about its genetic diversity is today available. Forty individuals of P. radiata, representing all populations in the Chilean radiata pine breeding program were genotyped with five microsatellite loci in order to determine genetic diversity and structure of Chilean plantations. The results of genetic diversity indicated that, after its introduction and mass planting, Chilean plantations of P. radiata has retained levels of genetic diversity similar to those of the natural populations of the species (HE=0.87, A=11.4). Genetic differentiation among populations (FST=0.04) was low, which means that the genetic variation present in radiata pine in Chile is partitioned among populations, indicating they are poorly differentiated. The structure analysis indicated the genetic base of the present plantations in Chile comes only from one provenance of the native populations. The genetic information provided important implications for the future breeding programs of P. radiata in Chile.


ADAMS, W. (1981): Population genetics and gene conservation in Pacific Northwest conifers, pp. 401-415. In: Evolution Today, Proc 2nd Int Cong Syst Evol Biol, edited by C. G. E. SCUDDER and J. L. REVEAL. Hunt Inst Bot Document, Pittsburgh. Search in Google Scholar

ADES, P. K. and J. A. SIMPSON (1991): Variation in susceptibility to Dothistroma needle blight among provenances of Pinus radiata var. radiata. Silvae Genet. 40: 6-13.Search in Google Scholar

ALLENDORF, F. W. and R. F. LEARY (1986): Heterozygosity and fitness in natural populations of animals, pp. 57-76. In: Conservation Biology, edited by M.E. SOULÉ, Sinauer. Sunderland/MA.Search in Google Scholar

ARAGONES, A., I. BARRENA, S. ESPINEL, A. HERRAN and E. RITTER (1997): Origin of Basque populations of Radiata pine from RAPD data. Ann. Sci. For. 54: 697-703.Search in Google Scholar

ARREGUI, A., S. ESPINEL, A. ARAGONES and R. SIERRA (1999): Estimación de parámetros genéticos en un ensayo de progenie de Pinus radiata D. Don en el país Vasco. Invest. Agr. Sist. Recur. For. 8 (1): 119-128.Search in Google Scholar

AXELROD, D. I. (1980): History of maritime closed-cone pines, Alta and Baja California. University of California Press, California, USA.Search in Google Scholar

BELL, J., M. POWELL, M. DEVEY and G. MORAN (2004): DNA Profiling, Pedigree Lineage Analysis and Monitoring in the Australian Breeding Program of Radiata Pine. Silvae Genet. 53 (3): 130-134.10.1515/sg-2004-0023Search in Google Scholar

BRADSHAW, A. D. (1965): Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics. 13: 115-155.10.1016/S0065-2660(08)60048-6Search in Google Scholar

BURDON, R. D. (1978): Mejoramiento genético forestal en Chile. CONAF-FAO. FO.DP/CHI/76/003. Documento de Trabajo N° 11, 81 pp.Search in Google Scholar

BURDON, R. D., M. H. BANNISTER and C. A. LOW (1992): Genetic survey of Pinus radiata. 2: Population comparisons for growth rate, disease resistance, and morphology. N. Z. J. For. Sci. 22: 138-159.Search in Google Scholar

BURNS, R. and B. HONKALA (1990): Conifers, pp. 1-1383. In: Silvics of North America. Agriculture Handbook. U.S. Department of Agriculture, Forest Service, Washington, DC.Search in Google Scholar

CAMUS, P. (2006): Ambiente, bosques y gestión forestal en Chile 1541-2005. Santiago, Chile. Diban LOM.Search in Google Scholar

CAMPOS, H., B. SOTO and C. VENEGAS (2001): Genetic analysis of Monterrey pine (Pinus radiata) breeding families with RAPD genetic markers. In: Proceedings from IV Encuentro Latinoamericano de Biotecnología Vegetal, 4-8 June 2001, Goiania, Brasil.Search in Google Scholar

CORCUERA, L., E. GIL-PELEGRIN and E. NOTIVOL (2010): Phenotypic plasticity in Pinus pinaster δ13C: environment modulates genetic variation. Annals of Forest Science. 67: 812. 10.1051/forest/2010048Search in Google Scholar

DELGADO P., A. CUENZA, A. E. ESCALANTE, F. MOLINAFREANER and D. PIÑERO (2002): Comparative genetic structure in pines: evolutionary and conservation consequences. Rev. Chil. Hist. Nat. 75: 27-37.Search in Google Scholar

DEVEY, M., J. BELL, T. UREN and G. MORAN (2002): A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata. Genome. 45: 984-989.10.1139/g02-06412416633Search in Google Scholar

ENNOS, R. A., N. R. COWIE, C. J. LEGG and C. SYDES (1997): Which measures of genetic variation are relevant in plant conservation? A case study of Primula scotica, pp. 73-79. In: The Role of Genetics in Conserving Small Populations, edited by T. J. CRAWFORD, J. SPENSER, D. STEVENS, M. B. USHER, T. E. TEW and J. WARREN. JNCC, Peterborough. Search in Google Scholar

ESPINOZA, S. (2012): Caracterización de la raza local de Pinus radiata D. Don en Chile en relación a su diversidad genética y respuesta temprana frente a una restricción hídrica. Tesis Doctoral. Universidad de Chile. 115 p.Search in Google Scholar

EVANO, G., S. REGNAUT and J. GOUDET (2005): Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology. 14: 2611-2620.10.1111/j.1365-294X.2005.02553.x15969739Search in Google Scholar

EXCOFFIER, L. G. and S. SCHNEIDER (2005): Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. 1: 47-50.Search in Google Scholar

FLORES, F. and H. ALLEN (2004): Efectos del clima y capacidad de almacenamiento de agua del suelo en la productividad de rodales de pino radiata en Chile: un análisis utilizando el modelo 3-PG. Bosque 25 (3): 11-24.10.4067/S0717-92002004000300002Search in Google Scholar

FUNDACIÓN CHILE (2005): Simulador de árbol individual para pino radiata (Pinus radiata D. Don): Arquitectura de Copa y Calidad de Madera. Manual Práctico de Manejo. Proyecto FONDEF D01/1021. 126 pp.Search in Google Scholar

FRANKEL, O. H. (1983): The place of management in conservation, pp. 1-14. In: Genetics and Conservation, edited by C. M. SCHONEWALD-COX, S. M. CHAMBERS, B. MACBRYDE and L. THOMAS. Benjamin-Cummings, Menlo Park, California, USA.Search in Google Scholar

GAPARE, W. J., S. N. AITKEN and C. E. RITLAND (2005): Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.) Carr) populations: implications for conservation of widespread species. Biol Conser. 123: 113-123.10.1016/j.biocon.2004.11.002Search in Google Scholar

GAPARE, W. J., B. S. BALTUNIS, M. IVKOVIC´, C. B. LOW, P. JEFFERSON and H. X. WU (2011): Performance differences among ex-situ native-provenance collections of Pinus radiata D. Don. 1: Potential for infusion into breeding populations in Australia and New Zealand. Tree Genet. Genomes. 7: 409-419.10.1007/s11295-010-0343-5Search in Google Scholar

GEBUREK, T. (1997): Isozymes and DNA markers in gene conservation of forest trees. Biodiversity and Conservation. 6: 1639-1654.10.1023/A:1018330906758Search in Google Scholar

HAMRICK, J. L., M. J. W. GODT and S. L. SHERMAN-BROYLES (1992): Factors influencing levels of genetic diversity in woody plant species. New. For. 6: 95-124.Search in Google Scholar

HAMRICK, J. L. (2004): Response of forest trees to global environmental changes. For. Ecol. Manag. 197: 323-335.Search in Google Scholar

HART, D. L. and A. G. CLARK (1989): Principles of population genetics. Sinauer Associates Inc., Sunderland, Massachusetts.Search in Google Scholar

HUBER, A. and R. TRECAMAN (2004): Eficiencia del uso del agua en plantaciones de Pinus radiata en Chile. Bosque 25 (3): 33-43.10.4067/S0717-92002004000300004Search in Google Scholar

INFOR. (2010): Anuario Forestal 2010. Instituto Forestal, Chile. Boletín Estadístico N° 128. 134 pp. Search in Google Scholar

JOHNSON, I. G., P. K. ADES and K. G. ELDRIDGE (1997): Growth of natural Californian provenances of Pinus radiata in New South Wales, Australia. N. Z. J. For. Sci. 27: 23-38.Search in Google Scholar

KARHU, A., C. VOGL, G. MORAN, J. BELL and O. SAVOLAINEN (2006): Analysis of microsatellite variation in Pinus radiata revelas effect of genetic drift but no recent bottlenecks. J. Evol. Biol. 19: 167-175.Search in Google Scholar

LEDIG, F. T. (1998): Genetic variation in Pinus, pp. 251-280. In: Ecology and biogeography of Pinus, edited by D. M. RICHARDSON. Cambridge University Press, Cambridge, U.K.Search in Google Scholar

LEWIS, N. B. and I. S. FERGUSON (1993): Management of radiata pine. Melbourne, Australia. Inkata Press.Search in Google Scholar

MATHESON, A. C., K. G. ELDRIDGE, A. G. BROWN and D. J. Spender.(1986): Wood volume gains from first-generation radiata pine seed orchards. DFR User Series, No. 4, Forest Research, CSIRO, Canberra. Search in Google Scholar

MORAN, G. and J. BELL (1987): The origin and genetic diversity of Pinus radiata in Australia. Theor. Appl. Genet. 73: 616-622.Search in Google Scholar

MORAN, G., J. BELL and K. ELDRIDGE (1988): The genetic structure and the conservation of the five natural populations of Pinus radiata. Can. J. For. Res. 18: 506-514.Search in Google Scholar

MUÑOZ, M. (2008): Silvicultura de Pinus radiata D. Don. Talca-Chile. Editorial Universidad de Talca. Colección Académica.Search in Google Scholar

NICOTRA, A. B., O. K. ATKIN, S. P. BONSER, A. M. DAVIDSON, E. J. FINNEGAN, U. MATHESIUS, P. POOT, M. D. PURUGGANAN, C. L. RICHARDS, F. VALLADARES and M. VAN KLEUNEN (2010): Plant phenotypic plasticity in a changing climate. Trends in Plant Science. 15: 684-692.10.1016/j.tplants.2010.09.00820970368Search in Google Scholar

PETIT, R. and A. HAMPE (2006): Some evolutionary consequence of being a tree. Annu. Rev. Ecol. Evol. S. 37: 187-214. Search in Google Scholar

PRITCHARD, J. K. and W. Wen (2003): Documentation for STRUCTURE software:Version 2. Available from http://pritch.bsd.uchicago.edu.Search in Google Scholar

ROGERS, D. (2002): In situ genetic conservation of Monterey pine (Pinus radiata D. Don). Information and recommendations. University of California, Division of Agriculture and Natural Resources, Genetic Resources Conservation Program Report No. 26. Davis, California, USA.Search in Google Scholar

ROGERS, D., C. MATHESON, J. J. VARGAS-HERNANDEZ and J. J. GUERRA-SANTOS (2006): Genetic conservation of insular populations of monterey pine (Pinus radiata D. Don). Biodivers. Conserv. 15: 779-798.Search in Google Scholar

SANTIBAÑEZ, F. and J. URIBE (1993): Atlas agroclimático de Chile. VI, VII, VIII y IX Regiones. Santiago: Laboratorio de Agroclimatología, Facultad de Ciencias Agrarias y Forestales, Universidad de Chile, 1993, 73 pp.Search in Google Scholar

SCHLICHTING, C. D. and M. PIGLIUCCI (1998): Phenotypic evolution - A reaction norm perspective. Sinauer Associates, Sunderland, MA.Search in Google Scholar

SLAVOV, G. T., S. P. DIFAZIO and S. H. STRAUSS (2004): Gene flow in forest trees: gene migration patterns and landscape modeling of transgene dispersal in hybrid poplar, pp. 89-106. In: Introgression from Genetically Modified Plants into Wild Relatives, edited by H. C.M. DEN NIJS, D. BARTSCH and J. SWEET. CAB Int., Wallingford UK.10.1079/9780851998169.0089Search in Google Scholar

SMITH, D. and M. DEVEY (1994): Occurrence and inheritance of microsatellites in Pinus radiata. Genome. 37: 977-983.10.1139/g94-1387828844Search in Google Scholar

SULTAN, S. E (1987): Evolutionary implications of phenotypic plasticity in plants. Evolutionary Biology. 21: 127-178.10.1007/978-1-4615-6986-2_7Search in Google Scholar

SZMIDT, A. and O. MUONA (1985): Genetic effects on Scots pine (Pinus sylvestris L.) domestication, pp. 241-252. In: Population genetics in forestry, edited by H. R. GREGORIOUS. Springer, Berlin, Heidelberg, New York, Tokyo.10.1007/978-3-642-48125-3_16Search in Google Scholar

VOGL, C., A. KARHU, G. MORAN and O. SAVOLAINEN (2002): High resolution analysis of mating systems: inbreeding in natural populations of Pinus radiata. J. Evol. Biol. 15 (3): 433-439.10.1046/j.1420-9101.2002.00404.xSearch in Google Scholar

WANG, J. (2005): Estimation of effective population sizes from data on genetic markers. Phil. Trans. R. Soc. B. 360: 1395-1409.Search in Google Scholar

WHITE, T. L., W. T. ADAMS and D. B. NEALE (2007): Forest Genetics. Oxfordshire, United Kingdom. CABI Publishing.10.1079/9781845932855.0000Search in Google Scholar

WU, J., K.V. KRUTOVSKII and S. H. STRAUSS (1999): Nuclear DNA diversity, population differentiation, and phylogenetic relationship in the Californian closed-cone pines based on RAPD and allozyme markers. Genome. 42: 893-908.10.1139/g98-171Search in Google Scholar

WU, H. X., K. ELDRIDGE, C. MATHESON, M. POWELL, T. MCRAE, T. BUTCHER and I. JOHNSON (2007): Achievements in forest tree improvement in Australia and New Zealand 8. Successful introduction and breeding of radiata pine in Australia. Aust. For. 70 (4): 215-225.Search in Google Scholar

YEH, F. C. and T. BOYLE (1999): POPGENE VERSION 1.31 Microsoft Window-based Freeware for Population Genetic Analysis. University of Alberta. Canada.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo