1. bookVolume 60 (2011): Issue 1-6 (December 2011)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Transcript abundances of LIM transcription factor, 4CL, CAld5H and CesAs affect wood properties in Eucalyptus globulus

Published Online: 05 Aug 2017
Volume & Issue: Volume 60 (2011) - Issue 1-6 (December 2011)
Page range: 288 - 296
Received: 21 Jul 2011
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

Eucalyptus globulus is the main hardwood species grown in pulpwood plantations in temperate regions of the world. We have cloned six genes influencing wood quality including the LIM domain transcription factor (LIM), 4-coumarate-CoA ligase (4CL), coniferaldehyde 5-hydroxylase (CAld5H) and the three catalytic units of cellulose synthase (CesA), from E. globulus. The transcript abundances of LIM in basal stems of ten independent E. globulus lines showed similar patterns to those of 4CL. We investigated the correlation between gene transcript abundances and wood qualities such as Klason lignin (KL) content, syringaldehyde/vanillin (S/V) ratio and holocellulose (HC) content. Expression of the LIM and 4CL were positively correlated with KL content. A highly significant positive correlation was observed between CAld5H expression and S/V ratio. Furthermore, a ratio of the sum of the transcript abundances of three CesA1, CesA2 and CesA3 to 4CL showed a positive correlation with a ratio of HC/KL content that positively correlated with the chemically extracted fiber content in this woody plant.

Keywords

Boerjan, W., J. Ralph and M. Baucher (2003): Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519–546.10.1146/annurev.arplant.54.031902.13493814503002Search in Google Scholar

Chiang, V. L. and M. Funaoka (1988): The dissolution and condensation reactions of guaiacyl and syringyl units in residual lignin during kraft deligninification of sweetgum. Holzforschaug. 44: 147–155.10.1515/hfsg.1990.44.2.147Search in Google Scholar

Chomczynski, P. and N. Sacchi (1987): Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Annal. Biochem. 162: 156–159.Search in Google Scholar

Endler, A. and S. Persson (2011): Cellulose synthases and synthesis in Arabidopsis. Mol. Plant, 4: 199-211.Search in Google Scholar

Effland, M. J. (1977): Modified procedure to determine acid insoluble lignin in wood and pulp. Tech. Assoc. Pulp Paper Ind. J. 60: 143–144.Search in Google Scholar

Fadim, P. and N. Duran (2004): Retention of cellulose, xylan and lignin in kraft pulping of eucalyptus studied by multivariate data analysis: influences on physicochemical and mechanical properties of pulp. J. Braz. Chem. Soc. 15: 514–522.Search in Google Scholar

Gallo de Carvalro, M. C., D. G. Caldas, R. T. Carneiro, D. H. Moon, G. R. Salvatierra, L. M. Franceschini, A. de Andrade, P. A. Celedon, S. Oda and C. A. Labate (2008): SAGE transcript profiling of the juvenile cambial region of Eucalyptus grandis. Tree Physiol. 28: 905–919.10.1093/treephys/28.6.90518381271Search in Google Scholar

Goicoechea, M., E. Lacombe, S. Legay, S. Mihaljevic, P. Rech, A. Jauneau, C. Lapierre, B. Pollet, D. Verhaegen, N. Chaubet-Giot and J. Grima-Pettenati (2005): EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J. 43: 553–567.10.1111/j.1365-313X.2005.02480.x16098109Search in Google Scholar

Hinchee, M., W. Rottmann, L. Mullinax, C. Zhang, S. Chang, M. Cunningham, L. Pearson and N. Nehra (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Biol. Plant. 45, 619–629.Search in Google Scholar

Hu, W.–J., J. Lung, S. A. Harding, J. L. Popko, J. Ralph, D. D. Stokke, C.-J Tsai and V. L. Chiang (1999): Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17: 808–812.Search in Google Scholar

Humphreys, J. M. and C. Chapple (2002): Rewriting the lignin roadmap. Curr. Opin. Plant Biol. 5: 224–229.Search in Google Scholar

Kajita, S., S. Hashimoto, Y. Tomimura, Y. Katayama and S. Omori (1997): Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme a ligase is depressed. Plant Physiol. 114: 871–879.10.1104/pp.114.3.87115837412223748Search in Google Scholar

Kaothien, P., A. Kawaoka, H. Ebinuma, K. Yoshida and A. Shinmyo (2002): Ntlim1, a PAL-box binding factor, controls promoter activity of the horseradish wound-inducible peroxidase gene. Plant Mol. Biol. 49: 591–599.Search in Google Scholar

Kawaoka, A., P. Kaothien, K. Yoshida, S. Endo, K. Yamada and H. Ebinuma (2000): Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J. 22: 289–301.10.1046/j.1365-313x.2000.00737.x10849346Search in Google Scholar

Kawaoka, A., K. Nanto, K. Ishii and H. Ebinuma (2006): Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genet. 55: 269–277.10.1515/sg-2006-0035Search in Google Scholar

Kubo, M., M. Udagawa, N. Nishikubo, G. Horiguchi, M. Yamagchi, J. Ito, T. Mimura, H. Fukuda and T. Demura (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes & Develop. 19: 1855–1860.10.1101/gad.1331305118618516103214Search in Google Scholar

Kumar, M., S. Thammanngowda, V. Bulone, V. Chiang, K. H. Han C. P. Joshi, S. D. Mansfield, E. Mellerowicz, B. Sundberg, T. Teeri and B. E. Ellis (2009): An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci., 14: 248–254.Search in Google Scholar

Li, L., Y. Zhou, X. Cheng, X. Sun, J. M. Marita, J. Ralph and V. L. Chiang (2003): Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc. Natl. Acad. Sci. USA, 100: 4939–4944.10.1073/pnas.083116610015365912668766Search in Google Scholar

Li, X., J.-K. Weng and C. Chappele (2008): Improvement of biomass through lignin modification. Plant J. 54: 569–581.10.1111/j.1365-313X.2008.03457.x18476864Search in Google Scholar

Lu, S., L. Li, X. Yi, C. P. Joshi and V. L. Chiang (2008): Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. J. Exp. Botany 59: 681–695.Search in Google Scholar

Mitsuda, N., A. Iwase, H. Yamamoto, M. Yoshida, M. Seki, K. Shinozaki and M. Ohme-Takagi (2007): NAC Transcription Factors, NST1 and NST3, Are Key Regulators of the Formation of Secondary Walls in Woody Tissues of Arabidopsis. Plant Cell 19: 270–280.10.1105/tpc.106.047043182095517237351Search in Google Scholar

Nagae, S., T. Takamura, T. Tanabe, A. Murakami, K. Murakami and M. Tanaka (1996): In vitro shoot development of Eucalyptus citriodora on Rockwool in the film culture vessel under CO2 enrichment. J. Forest Research 1: 227–230.10.1007/BF02348330Search in Google Scholar

Pear, J. R., Y. Kawagoe, W. E. Schreckengost, D. P. Delmer and D. M. Stalker (1996): Higher plant contain homologs of the bacterial cesA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637–12642.10.1073/pnas.93.22.12637380458901635Search in Google Scholar

Ranic, M. and A. A. Myburg (2006): Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiol. 26: 545–556.10.1093/treephys/26.5.54516452068Search in Google Scholar

Rencoret, J., A. Gutierres and J. C. del Rio (2007): Lipid and lignin composition of woods from different eucalypt species. Holzforschung. 61: 165–174.10.1515/HF.2007.030Search in Google Scholar

Rengel, D., H. San Clemente, F. Servant, N. Ladouce, E. Paux, P. Wincker, A. Couloux, P. Sivadon and J. Grima-Pettenati (2009): A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biol. 9: 36–49.10.1186/1471-2229-9-36267083319327132Search in Google Scholar

Rogers L. A. and M. M. Campbell (2004) The genetic control of lignin deposition during plant growth and development. New phytologist. 164: 17–30.10.1111/j.1469-8137.2004.01143.x33873487Search in Google Scholar

Sarknen, K. V. (1971): Lignins, pp. 19–42. In: Occurrences, Formation, Structure and Reaction, edited by K. V. Sarknen and C. H. Ludwig, Wiley Interscience, New York.Search in Google Scholar

Voelker, S. L., B. Lachenbruch, F. C. Meinzer, M. Jourdes, C. Ki, A. M. Patten, L. B. Davin, N. G. Lewis, G. A. Tuskan, L. Gunter, S. R. Decker, M. J. Selig, R. Sykes, M. E. Himmel, P. Kitin, O. Sheychenko and S. H. Strauss (2010): Antisense-down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Phisyol. 154: 874–886.10.1104/pp.110.159269294901120729393Search in Google Scholar

Vonholme, R., K. Morreel, J. Ralph and W. Boerjan (2008): Lignin engineering. Curr. Opi. Plant Biol. 11: 278–285.Search in Google Scholar

Weng, J. K., L. Xu, J. Stout and C. C. Chapple (2008): Independent origins of syringyl lignin in vascular plants. Pro. Natl. Acad. Sci. USA, 105: 7887–7892.10.1073/pnas.0801696105240940018505841Search in Google Scholar

Wise, L. E., M. Murphy and A. A. D’Addieco (1946): Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicellulose. Paper Trade J., 122: 35–43.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo