1. bookVolume 109 (2017): Issue 1 (October 2017)
Journal Details
License
Format
Journal
First Published
04 May 2010
Publication timeframe
2 times per year
Languages
English
access type Open Access

Visualizing Neural Machine Translation Attention and Confidence

Published Online: 16 Sep 2017
Page range: 39 - 50
Journal Details
License
Format
Journal
First Published
04 May 2010
Publication timeframe
2 times per year
Languages
English

In this article, we describe a tool for visualizing the output and attention weights of neural machine translation systems and for estimating confidence about the output based on the attention.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/1409.0473.Search in Google Scholar

Helcl, Jindřich and Jindřich Libovický. Neural Monkey: An Open-source Tool for Sequence Learning. The Prague Bulletin of Mathematical Linguistics, (107):5–17, 2017. ISSN 0032-6585. doi: 10.1515/pralin-2017-0001. URL http://ufal.mff.cuni.cz/pbml/107/art-helcl-libovicky.pdf.10.1515/pralin-2017-0001.URLhttp://ufal.mff.cuni.cz/pbml/107/art-helcl-libovicky.pdfOpen DOISearch in Google Scholar

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and Hieu Hoang. Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions. In Proceedings of the 9th International Workshop on Spoken Language Translation (IWSLT), Seattle, WA, 2016. URL http://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_4.pdf.Search in Google Scholar

Klejch, Ondřej, Eleftherios Avramidis, Aljoscha Burchardt, and Martin Popel. MT-ComparEval: Graphical evaluation interface for Machine Translation development. The Prague Bulletin of Mathematical Linguistics, 104(1):63–74, 2015.Search in Google Scholar

Koehn, Philipp. Statistical Machine Translation. Cambridge University Press, 2009.Search in Google Scholar

Madnani, Nitin. iBLEU: Interactively debugging and scoring statistical machine translation systems. In Semantic Computing (ICSC), 2011 Fifth IEEE International Conference on, pages 213–214. IEEE, 2011.Search in Google Scholar

Och, Franz Josef and Hermann Ney. A Comparison of Alignment Models for Statistical Machine Translation. In Proceedings of the 17th conference on Computational linguistics, pages 1086–1090. Association for Computational Linguistics, 2000. ISBN 1-555-55555-1.Search in Google Scholar

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311–318. Association for Computational Linguistics, 2002.Search in Google Scholar

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone, Jozef Mokry, et al. Nematus: a Toolkit for Neural Machine Translation. EACL 2017, page 65, 2017.Search in Google Scholar

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. CoRR, abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.Search in Google Scholar

Zeman, Daniel, Mark Fishel, Jan Berka, and Ondřej Bojar. Addicter: What Is Wrong with My Translations? The Prague Bulletin of Mathematical Linguistics, 96:79–88, 2011.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo