1. bookVolume 13 (2014): Issue 2 (December 2014)
Journal Details
License
Format
Journal
First Published
28 Jun 2012
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo
Journal Details
License
Format
Journal
First Published
28 Jun 2012
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

The aim of this study was to determine the influence of malting on the antioxidant content in cereals such as wheat (PS Sunanka, Zaira, PS 57/11 and Vanda), oat (Dunajec) and barley (Laudis 550) harvested in 2013. Antioxidant and polyphenol contents of these cereals and malts were investigated. Secondary, technological parameters of prepared malts were evaluated and compared with malt from barley Laudis 550 used as reference material. Malting of selected cereals had an impact on antioxidant and polyphenol content and allowed a better extraction of these compounds from cereal matrix, except of barley malt, whose antioxidant and total polyphenol content remained comparable. For other cereal malts, antioxidant contents were 2.0, 1.8, 2.6, 2.9 and 3.2-fold higher and total polyphenol content were 1.8, 1.9, 1.9, 3.1 and 3.4-fold higher than in wheat (PS Sunanka, Zaira, PS 57/11, Vanda) and oat (Dunajec), respectively. From correlation analysis, the results showed that not all polyphenols released by malting have antioxidant activity. Technological parameters (friability, haze of wort, saccharification rate, filtration rate, extract and diastatic power) also indicated that good malt quality had oat Dunajec and wheat PS Sunanka and Zaira in comparison with reference material (barley Laudis 550).

Keywords

ADOM, K.K., SORRELLS, M.E., LIU, R.H.: Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem., 53, 2005, 2297-2306.Search in Google Scholar

ANSON, N.M., VAN DEN BERG, R., HAVENAAR, R., BAST, A., HAENEN, M.M.: Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L). J. Agric. Food Chem., 56, 2008, 5589-5594.Search in Google Scholar

BENGOECHEA, M.L., SANCHO, A.I., BARTOLOMÉ, B., ESTRELLA, I., GÓMEZ-CORDOVÉS, C., HERNÁNDEZ, M.T.: Phenolic composition of industrially manufactured purées and concentrates from peach and apple fruits. J. Agric. Food Chem., 45, 1997, 4071-4075.Search in Google Scholar

CHEN, C.Y., MILBURY, P.E., COLLINS, F.W., BLUMBERG, J.B.: Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J. Nutr., 137, 2007, 1375-1382.Search in Google Scholar

CHMELOVÁ, D., ONDREJOVIČ, M., HAVRLENTOVÁ, M., HOZLÁR, P.: Antioxidant activity in naked and hulled oat (Avena sativa L.) varieties. J. Microbiol. Biotechnol. Food Sci., 2015, in press.Search in Google Scholar

DOBLADO, R., FRIAS, J., VALVERDE, C.V.: Changes in vitamin C content and antioxidant capacity of raw and germinated (Vigna sinensis var. carilla) seeds induced by high pressure treatment. Food Chem., 101, 2007, 918-923.Search in Google Scholar

DVOŘÁKOVÁ, M., DOSTÁLEK, P., SKULILOVÁ, Z., JURKOVÁ, M., KELLNER, V., GUIDO, L.F.: Barley and malt polyphenols and their antioxidant properties. Kvasny Prum., 56, 2010, 160-163.Search in Google Scholar

EBC ANALYSIS COMMITTEE: Analytica EBC. Nürnberg, Fachverlag Hans Carl, 2010, 221 pp.Search in Google Scholar

EDNEY, M.J., MATHER, D.E.: Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six-rowed barley cross. J. Cereal Sci., 39, 2004, 283-290.Search in Google Scholar

EMMONS, C.L. AND PETERSON, D.M.: Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chem., 76, 1999, 902-906.Search in Google Scholar

EMMONS, C.L., PETERSON, D.M. AND PAUL, G.L.: Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J. Agric. Food Chem., 47, 1999, 4894-4898.Search in Google Scholar

GOUPY, P., HUGUES, M., BOIVIN, P., AMIOT, M.J.: Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Agric. Food Chem., 79, 1999, 1625-1634.Search in Google Scholar

HERNANZ, D., NUŇEZ, V., SANCHO, A.I., FAULDS, C.B., WILLIAMSON, G., BARTOLOMÉ, B., GÓMEZ-CORDOVÉS, C.: Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. J. Agric. Food Chem., 49, 2001, 4884-4888.Search in Google Scholar

IVANIŠOVÁ, E., ONDREJOVIČ, M., CHMELOVÁ, D., MALIAR, T., HAVRLENTOVÁ, M., RÜCKSCHLOSS, Ľ.: Antioxidant activity and polyphenol content in milling fractions of purple wheat. Cereal Res. Commun., 42, 2014, 578-588.Search in Google Scholar

KIM, K.-H., TSAO, R., YANG, R., CUI, S.W.: Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem., 95, 2006, 466-473.Search in Google Scholar

KUNZE, W.: Technology of Brewing and Malting. VLB Berlin Versuchs-und Lehranstalt für Brauerei in Berlin, Germany, 1996, 960 pp.Search in Google Scholar

LU, J., ZHAO, H.F., CHEN, J., FAN, W., DONG, J.J., KONG, W.B., SUN, J.Y., CAO, Y., CAI, G.L.: Evolution of phenolic compounds and antioxidant activity during malting. J. Agric. Food Chem., 55, 2007, 10994-11001.Search in Google Scholar

MALIAR, T.: Biological active and valuable components of cereals, pseudocereals and forages for functional food production. Final report of project APVV-0758-11, Trnava, UCM, 2013, 10 pp.Search in Google Scholar

MEBAK: Raw Materials: Barley; Adjuncts; Malt; Hops and Hop Products; Collection of Brewing Analysis Methods of the Mitteleuropäische Brautechnische Analysenkommission. MEBAK, Freising-Weihenstephan, 2011, 341 pp.Search in Google Scholar

MPOFU, A., SAPIRSTEIN, H.D., BETA, T.: Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem., 54, 2006, 1265-1270.Search in Google Scholar

NARDINI, M., GHISELLI, A.: Determination of free and bound phenolic acids in beer. Food Chem., 84, 2004, 137-143.Search in Google Scholar

NIELSEN, J. P., MUNCK, L.: Evaluation of malting barley quality using exploratory data analysis. I. Extraction of information from micro-malting data of spring and winter barley. J. Cereal Sci., 38, 2003, 173-180 Search in Google Scholar

PSOTA, V., DVOŘÁČKOVÁ, O., SACHAMBULA, L.: Odrůdy ječmene registrované v České republice v roce 2013. Kvasny prum., 59, 2013, 118-126.Search in Google Scholar

QINGMING, Y., XIANHUI, P., WEIBAO, K., HONG, Y., YIDAN, S., LI, Z., YANAN, Z., YULLING, Y., LAN, D., GUOAN, L.: Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem., 118, 2010, 84-89.Search in Google Scholar

RYAN, L., THONDRE, P.S., HENRY, C.J.K.: Oat-based breakfast cereals are a rich source of polyphenols and high in antioxidant potential. J. Food Comp. Anal., 24, 2011, 929-934.Search in Google Scholar

SERPEN, A., CAPUANO, E., FOGLIANO, V., GÖKMEN, V.: A new procedure to measure the antioxidant activity of insoluble food components. J. Agric. Food Chem., 55, 2007, 7676-7681.Search in Google Scholar

SHAHIDI, F., WANASUNDARA, P.K.: Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 32, 1992, 67-103.Search in Google Scholar

SINGLETON, V.L., ROSSI, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 6, 1965, 144-148.Search in Google Scholar

STALIKAS, C.D.: Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci., 30, 2007, 3268-3295.Search in Google Scholar

WINK, M.: Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv. Bot. Res., 25, 1997, 141-169.Search in Google Scholar

YEN, G.C., CHEN, H.Y.: Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem., 43, 1995, 27-32. Search in Google Scholar

Plan your remote conference with Sciendo