1. bookVolume 16 (2016): Issue 1 (October 2016)
Journal Details
License
Format
Journal
eISSN
1647-659X
First Published
01 Mar 2016
Publication timeframe
3 times per year
Languages
English
access type Open Access

The Epistemological Import of Euclidean Diagrams (in a non-Euclidean world)

Published Online: 08 Nov 2016
Volume & Issue: Volume 16 (2016) - Issue 1 (October 2016)
Page range: 124 - 141
Journal Details
License
Format
Journal
eISSN
1647-659X
First Published
01 Mar 2016
Publication timeframe
3 times per year
Languages
English
Abstract

In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may (and, indeed) have in empirical sciences, more specifically in physics. I shall claim that, although the world we live in is not Euclidean, Euclidean diagrams permit to obtain knowledge of the world through a specific mechanism of inference I shall call inheritance.

Avigad, J., Dean, E., and Mumma, J., 2009, A formal system for Euclid’s elements. Review of Symbolic Logic, 2 (4):700-768.10.1017/S1755020309990098Search in Google Scholar

Barwise, J. and Etchemendy, J., 1996, Visual information and valid reasoning. In Allwein, G. and Barwise, J. (eds.), Logical Reasoning with Diagrams, New York (USA): Oxford University Press, pp. 3-25.10.1093/oso/9780195104271.003.0005Search in Google Scholar

Brown, J. R., 1999, Philosophy of Mathematics: an Introduction to the World of Proofs and Pictures. London: Routledge.Search in Google Scholar

Bueno, O. and Colyvan, M., 2011, An inferential conception of the application of mathematics. Noûs, 45 (2): 345-374.10.1111/j.1468-0068.2010.00772.xSearch in Google Scholar

De Risi, V., 2016, Leibniz on the Parallel Postulate and the Foundations of Geometry. Basel: Birkhäuser.10.1007/978-3-319-19863-7Search in Google Scholar

Feynman, R., 1965, The Character of Physical Law. Cambridge, Mass.: MIT Press.Search in Google Scholar

Giaquinto, M., 2007, Visual Thinking in Mathematics. Oxford: Oxford University Press.10.1093/acprof:oso/9780199285945.001.0001Search in Google Scholar

Giaquinto, M., 2008, Visualizing in mathematics. In: Mancosu, P. (ed.), The Philosophy of Mathematical Practice, Oxford: Oxford University Press, pp. 22-42.10.1093/acprof:oso/9780199296453.003.0002Search in Google Scholar

Gray, J., 1989, Ideas of Space: Euclidean, Non-Euclidean and Relativistic. Oxford: Clarendon Press.Search in Google Scholar

Kosslyn, S., 1994, Image and Brain. Cambridge, Mass.: MIT Press.10.7551/mitpress/3653.001.0001Search in Google Scholar

Leibniz, G., 1949, New Essays Concerning Human Understanding. La Salle, IL: Open Court Publishing.Search in Google Scholar

Mancosu, P., 2005, Visualization in logic and mathematics. In Mancosu, P., Jørgensen, K. F., and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics, Dordrecht: Springer, pp. 13-30.10.1007/1-4020-3335-4_2Search in Google Scholar

Mancosu, P., Jørgensen, K. F., and Pedersen, S. A., 2005, Visualization, Explanation and Reasoning Styles in Mathematics, Dordrecht: Springer, vol. 327.10.1007/1-4020-3335-4Search in Google Scholar

Manders, K., 2008a, Diagram-based geometric practice. In: Mancosu, P. (ed.), The Philosophy of Mathematical Practice, Oxford: Clarendon Press, pp. 65-79.10.1093/acprof:oso/9780199296453.003.0004Search in Google Scholar

Manders, K., 2008b, The Euclidean diagram (1995). In: Mancosu, P. (ed.), The Philosophy of Mathematical Practice, Oxford: Clarendon Press, pp. 80-133.Search in Google Scholar

Miller, N., 2008, Euclid and his Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry, Stanford, CA: CSLI.Search in Google Scholar

Molinini, D. and Panza, M., 2014, Sull’applicabilità della matematica. In: Varzi, A. and Fontanari, C. (eds.), La matematica nella società e nella cultura - Rivista della Unione Matematica Italiana, vol. VII, Serie I, pp. 367-395.Search in Google Scholar

Mumma, J., 2006, Intuition formalized: Ancient and modern methods of proof in elementary geometry. PhD thesis, Carnegie Mellon University.Search in Google Scholar

Mumma, J., 2010, Proofs, pictures, and Euclid. Synthese, 175: 255-287.10.1007/s11229-009-9509-9Search in Google Scholar

Netz, R., 1998, Greek mathematical diagrams: Their use and their meaning. For the Learning of Mathematics, 18 (3): 33-39.Search in Google Scholar

Netz, R., 1999, The shaping of deduction in Greek mathematics: a study in cognitive history. Cambridge: Cambridge University Press.10.1017/CBO9780511543296Search in Google Scholar

Norman, J., 2006, After Euclid: Visual Reasoning and the Epistemology of Diagrams. Stanford: CSLI Publications.Search in Google Scholar

Panza, M., 2012, The twofold role of diagrams in Euclid’s plane geometry. Synthese, 186: 55-102.10.1007/s11229-012-0074-2Search in Google Scholar

Shepard, R. N. and Cooper, L. A., 1982, Mental images and their transformations. Cambridge (Mass): MIT Press.Search in Google Scholar

Sheredos, B., Burston, D. C., Abrahamsen, A., and Bechtel, W., 2013, Why do biologists use so many diagrams? Philosophy of Science, 80: 931-944.10.1086/674047Search in Google Scholar

Smadja, I., 2012, Local axioms in disguise: Hilbert on Minkowski diagrams. Synthese, 186 (1): 315-370.10.1007/s11229-011-9984-7Search in Google Scholar

Tennant, N., 1986, The withering away of formal semantics? Mind & Language, 1 (4): 302-318.10.1111/j.1468-0017.1986.tb00328.xSearch in Google Scholar

Thagard, P., 2005, Mind: Introduction to Cognitive Sciences. The MIT Press, 2nd ed.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo