1. bookVolume 44 (2017): Issue 1 (December 2017)
Journal Details
License
Format
Journal
eISSN
2083-4608
First Published
26 Feb 2008
Publication timeframe
4 times per year
Languages
English
access type Open Access

Applying Pareto Frontier to Determine Control Strategy of Technical Objects Operation Process

Published Online: 28 Jul 2018
Volume & Issue: Volume 44 (2017) - Issue 1 (December 2017)
Page range: 37 - 57
Journal Details
License
Format
Journal
eISSN
2083-4608
First Published
26 Feb 2008
Publication timeframe
4 times per year
Languages
English
Abstract

The paper deals with the multi-criteria model of technical objects operation process control in which the choice of control strategy is made with the use of nondeterministic methods. The decisive model was created with the use of decisive theories of semi-Markov processes. The choice of the optimum (quasi-optimum) solution is made with the use of simulated annealing algorithm. As a result of numeric calculations for used criteria functions (availability, risk), a set of quasi-optimum solutions in the form of Pareto frontier is obtained.

Keywords

[1] Czyżak P., Jaszkiewicz A.: Pareto simulated annealing - A metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Criteria Decision Anal., vol. 7, 1998, 34-47.10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6Search in Google Scholar

[2] Grabski F.: Analiza ryzyka w decyzyjnych semi-markowskich modelach procesu eksploatacji. XXXVIII Zimowa Szkoła Niezawodności, Szczyrk, 2010, 43-52.Search in Google Scholar

[3] Grabski F.: Semi-Markov processes: Applications in system reliability and maintenance. Elsevier, Amsterdam, 2014.10.1016/B978-0-12-800518-7.00004-1Search in Google Scholar

[4] Hapke M., Jaszkiewicz A., Słowiński R.: Pareto simulated annealing for fuzzy multi-objective combinatorial optimization. J. Heuristics, vol. 6, no. 3, 2000, 329-345.10.1023/A:1009678314795Search in Google Scholar

[5] Knopik L., Migawa K., Wdzięczny A.: Profit optimalization in operation systems. Polish Maritime Research, vol. 23, no. 1(89), 2016, 93-98.10.1515/pomr-2016-0013Search in Google Scholar

[6] Kulkarni V. G.: Modeling and analysis of stochastic systems. Chapman & Hall, New York, 1995.Search in Google Scholar

[7] Lee K. W.: Stochastic models for random-request availability. IEEE Trans. Reliability 49, 2000, 80-84.10.1109/24.855539Search in Google Scholar

[8] Migawa K., Knopik L., Sołtysiak A., Kolber P.: The method of risk assessment in transport system. Engineering Mechanics, Institute of Thermomechanics Academy of Sciences of the Czech Republic, 2017, 658-661.Search in Google Scholar

[9] Migawa K., Knopik L., Wawrzyniak S.: Application of genetic algorithm to control the availability of technical systems. Engineering Mechanics, Institute of Thermomechanics Academy of Sciences of the Czech Republic, 2016, 386-389.Search in Google Scholar

[10] Nam D. K., Park C.: Multiobjective simulated annealing: A comparative study to evolutionary algorithms,” Int. J. Fuzzy Syst., vol. 2, no. 2, 2000, 87-97.Search in Google Scholar

[11] Suman B., Kumar P.: A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society, vol. 57, 2006, 1143-1160.10.1057/palgrave.jors.2602068Search in Google Scholar

[12] Suppapitnarm A., Seffen K. A., Parks G. T., Clarkson P.: A simulated annealing algorithm for multiobjective optimization,” Eng. Opt., vol. 33, 2000, 59-85.10.1080/03052150008940911Search in Google Scholar

[13] Szubartowski M., Migawa K., Neubauer A., Knopik L.: Method of determining optimal control strategy. 58th International Conference of Machine Design Departments – ICMD 2017, Prague, Czech Republic, 2017, 380-385.Search in Google Scholar

[14] Ulungu E. L., Teghaem J., Fortemps P., Tuyttens D.: MOSA method: A tool for solving multiobjective combinatorial decision problems,” J. Multi-Criteri Decision Anal., vol. 8, 1999, 221-236.10.1002/(SICI)1099-1360(199907)8:4<221::AID-MCDA247>3.0.CO;2-OSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo