1. bookVolume 10 (2017): Issue 1-2 (April 2017)
Journal Details
First Published
25 Apr 2013
Publication timeframe
2 times per year
access type Open Access

Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary

Published Online: 05 Aug 2017
Page range: 41 - 51
Received: 01 Mar 2017
Accepted: 26 May 2017
Journal Details
First Published
25 Apr 2013
Publication timeframe
2 times per year

The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections (VO) of the Lower Tisza River for the years of 1891, 1931, 1961, 1976 and 1999. The changes in mean depth and thalweg depth were studied in detail comparing three reaches of the studied section. In general, the thalweg incised during the studied period (1891-1931: 3 cm/y; 1931-1961: 1.3 cm/y and 1976-1999: 2.3 cm/y), except from 1961-1976 which was characterized by aggradation (2 cm/y). The mean depth increased, referring to an overall deepening of the river during the whole period (1891-1931: 1.4 cm/y; 1931-1961: 1.2 cm/y; 1961-1976: 0.6 cm/y and 1976-1999: 1.6 cm/y). The thalweg shifted more in the upper reach showing less stabile channel, while the middle and lower reaches had more stable thalweg. Although the cross-sections subjected to various human interventions experienced considerable incision in the short-term, the cross-sections free from direct human impact experienced the largest incision from 1891-1999, especially along the meandering sections.


Anderson, R.S., Anderson, S.P. 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press, UK, 340 p.Search in Google Scholar

Antonelli, C., Provansal, M., Vella, C. 2004. Recent morphological channel changes in a deltaic environment. The case of the Rhone River, France. Geomorphology 57, 385-402. DOI: 10.1016/s0169-555x(03)00167-3Search in Google Scholar

Bezdan, M. 2010. Characteristics of the flow regime of the regulated Tisza River reach downstream of Tiszafüred. Journal of Env. Geogr. 3 (1-4), 25 -30.Search in Google Scholar

Bravard, J.P., Landon, N., Peiry, J.L., Piégay, H. 1999. Principles of engineering geomorphology for managing channel erosion and bedload transport, examples from French rivers. Geomorphology 31, 291 -311. DOI: 10.1016/s0169-555x(99)00091-4Search in Google Scholar

Brierley, G.J., Fryirs, K.A. 2005. Geomorphology and River Management: Applications of the river styles framework. Blackwell Publishing, UK, 398 p.Search in Google Scholar

Chang, H.H. 2008. River Morphology and River Channel Changes. Transactions of Tianjin Universities 14 (4), 254-262. DOI: 10.1007/s12209-008-0045-3Search in Google Scholar

Church, M. 2006. Bed Material Transport and the Morphology of Alluvial River Channels. Annual Review of Earth and Planetary Science 34, 325-354. DOI: 10.1146/annurev.earth.33.092203.122721Search in Google Scholar

Dey, S. 2014: Fluvial Hydrodynamics. GeoPlanet Series, Springer-Verlag, Berlin, 670 p.Search in Google Scholar

Dunka, S., Fejér, L., Vágás, I. 1996. A verítékes honfoglalás: A Tisza szabályozás története. Vízügyi Múzeum és Levéltár, Budapest, 210 p. (in Hungarian)Search in Google Scholar

Ferguson, R. 2010. Time to abandon the Manning equation? Earth Surf. Proc. Landf. 38, 1873-1876. DOI: 10.1002/esp.2091Search in Google Scholar

Fryirs, K.A., Brierley, G.J. 2001. Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic recovery. Geomorphology 38, 237-265. DOI_ 10.1016/s0169-555x(00)00093-3Search in Google Scholar

Fryirs, K.A., Brierley, G.J., Preston, N.J., Kasai, M. 2007. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena 70, 49-67. DOI: 10.1016/j.catena. 2006.07.007Search in Google Scholar

Fryirs, K.A., Brierley, G.J., Preston, N.J., Spencer, J. 2008. Catchmentscale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84 (3), 297-316. DOI: 10.1016/j.geomorph.2006.01.044Search in Google Scholar

Harmar, O.P., Clifford, N.J., Thorne, C. R., Biedenharn, D. S. 2005. Morphological changes of the Lower Mississippi River: Geomorphological response to engineering intervention. River Research Applications 21 (10), 1107-1131. DOI: 10.1002/rra.887Search in Google Scholar

Hooke, J.M. 1995. River channel adjustment to meander cutoffs on River Bollin and River Dane, Northwest England. Geomorphology 14, 235-253. DOI: 10.1016/0169-555x(95)00110-qSearch in Google Scholar

Huang, M.W., Liao, J.J., Pan, Y.W., Chen, M.H. 2014. Rapid channelization aqnd incision into soft bedrock induced by human activity: Implication from the Bachang River in Taiwan. Engineering Geology 177, 10-24. DOI: 10.1016/j.enggeo.2014.05.002Search in Google Scholar

International Commission for Protection of the Danube River (ICPDR). 2008. Analysis of the Tisza River Catchment 2007: Initial step towards the Tisza River Catchment Management Plan-2009. Vienna, Austria.Search in Google Scholar

Kasse, C., Bohnake, S. J. P., Vandenberghe, J., Gabris, G. 2010. Fluvial style changes during the las glacial0interglacial transition in the middle Tisza Valley (Hungary). Proceedings of the Geologists Association 121, 180-194. DOI: 10.1016/j.pgeola.2010.02.005Search in Google Scholar

Kiss, T. 2014. Fluviális Folyamatok antropogén hatásra megváltozó dinamikája: Egyensúly és érzékenység vizsgáta folyóvizi környezetben. Akadémiai doktori értekezés. Szeged, 165 p. (In Hungarian)Search in Google Scholar

Kiss, T., Balogh, M. 2015. Characteristics of point-bar development under the influence of a dam: Case study of the Dráva River at Sigetec, Croatia. Journal of Env. Geogr. 8 (1-2), 23-30. DOI: 10.1515/jengeo-2015-0003Search in Google Scholar

Kiss T., Fiala, K., Sipos, G. 2008. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 98, 96-110. DOI: 10.1016/j.geomorph.2007.02.027Search in Google Scholar

Kondolf, G.M., Piégay, H., Landon, N. 2002. Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments. Geomorphology 45, 35-51. DOI: 10.1016/s0169-555x(01)00188-xSearch in Google Scholar

Kroes, D.E., Kraemer, T.F. 2013. Human-induced stream channel abandonment Capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana. Geomorphology 201, 148-156. DOI: 10.1016/j.geomorph.2013.06.016Search in Google Scholar

Laczay, I.A. 1982. A folyószabályozás tervezésének morfológiai alapjai. Vízügyi Közlemények 64 (2), 235-256. (in Hungarian)Search in Google Scholar

Landon, N., Piégay, H., Bravard, J.P. 1998. The Drȏme River incision (France): from assessment to management. Landscape and Urban Planning 43 (1-3), 119-131. DOI: 10.1016/s0169-2046(98)00046-2Search in Google Scholar

Lászlóffy, W. 1982. A Tisza. Akadémiai Kiadó, Budapest. 610 p. (in Hungarian)Search in Google Scholar

Latapie, A., Camenen, B., Rodrigues, S., Paquier, A., Bouchard, J.P., Moatar, F. 2014. Assessing channel response of a long river influenced by human disturbance. Catena 121, 1-12. DOI: 10.1016/j.catena.2014.04.017Search in Google Scholar

Legleiter, C.J. 2014. A geostatistical framework for quantifying the reach-scale spatial structure of river morphology: 2. Application to restored and natural channels. Geomorphology 205, 85-101. DOI: 10.1016/j.geomorph.2012.01.017Search in Google Scholar

Liébault F., Piégay H. 2001. Assessment of channel changes due to longterm bedload supply decrease, Roubion River, France. Geomorphology 36, 167-186. DOI: 10.1016/s0169-555x(00)00044-1Search in Google Scholar

Liébault, F., Piégay, H. 2002. Causes of 20th century channel narrowing in Mountain and Piedmont Rivers of southeastern France. Earth Surface Proc. and Landforms 27, 425-444. DOI: 10.1002/esp.328Search in Google Scholar

Liébault, F., Gomez, B., Page, M., Marden, M., Peacock, D., Richard, D., Trotter, C.M. 2005. Land-use change, sediment production and channel response in upland regions. River Research and Applications 21, 739-756. DOI: 10.1002/rra.880Search in Google Scholar

Lóczy, D., Kis, É., Schweitzer, F. 2009. Local flood hazards assessed from channel morphometry along the Tisza River in Hungary. Geomorphology 113, 200-209. DOI: 10.1016/j.geomorph.2009.03.013Search in Google Scholar

Mezősi, G. 2009. The Physical Geography of Hungary. Springer, Switzerland, 334 p.Search in Google Scholar

Morais, E.S., Rocha, P.C., Hooke, J. 2016. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil. Geomorphology 273, 348-360. DOI: 10.1016/j.geomorph.2016.07.026Search in Google Scholar

Nagy, J., Kiss, T. 2016. Hydrological and morphological changes of the Lower Danube near Mohács, Hungary. Journal of Env. Geogr. 9 (1-2), 1-6.DOI: 10.1515/jengeo-2016-0001Search in Google Scholar

Osei, N.A., Harvey, G.L., Gurnell, A.M. 2015. The early impact of large wood introduction on the morphology and sediment characteristics of a lowland river. Limnologica 54, 33-43. DOI: 10.1016/j.limno.2015.08.001Search in Google Scholar

Pinke, Z. 2014. Modernization and Decline: an eco-historical perspective on regulation of the Tisza Valley, Hungary. Journal of Historical Geography 45, 92-105. DOI: 10.1016/j.jhg.2014.02.001Search in Google Scholar

Pinter, A, Heine, RA. 2005. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. Journal of Hydrology 302, 70-91. DOI: 10.1016/j.jhydrol.2004.06.039Search in Google Scholar

Powell, D.M. 2014. Flow resistance in gravel-bed Rivers: Progress in research. Earth Science Reviews 136, 301-338. DOI: 10.1016/j.earscirev.2014.06.001Search in Google Scholar

Rinaldi, M. 2003. Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surface Processes and Landforms 28, 587-608. DOI: 10.1002/esp.464Search in Google Scholar

Rinaldi, M., Simon, A. 1998. Bed-level adjustments in the Arno River, Central Italy. Geomorphology 22, 57-71. DOI: 10.1016/s0169-555x(97)00054-8Search in Google Scholar

Rinaldi, M., Wyżga, B., Surian, N. 2005. Sediment mining in alluvial rivers: physical effects and management perspectives. River Research and Application 21, 805-828. DOI: 10.1002/rra.884Search in Google Scholar

Schweitzer, F. 2009. Strategy or disaster: flood prevention related issues and actions in the Tisza River Catchment. Hung. Geogr. Bull. 58, 3-17. DOI: 10.1007/978-94-011-4140-6_9Search in Google Scholar

Simon, A, Rinaldi, M. 2006. Disturbance, stream incision, and channel evolution. The roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology 79 (3-4), 361-383. DOI: 10.1016/j.geomorph.2006.06.037Search in Google Scholar

Sipos, G., Kiss, T., Fiala, K. 2007. Morphological alterations due to channelization along the lower Tisza and Maros Rivers (Hungary). Geografia Fiscia E Dinamica Quaternia 30 (2), 239-247. DOI: 10.1016/j.geomorph.2007.02.027Search in Google Scholar

Smith, L.M., Winkley, B.R. 1996. The response of the Lower Mississippi River to river engineering. Engineering Geology 45, 433-455. DOI: 10.1016/s0013-7952(96)00025-7Search in Google Scholar

Surian, A. 1999. Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes Landforms 24, 1135-1151. DOI: 10.1002/(sici)1096-9837(199911)24:12<1135::aidesp40>3.3.co;2-6Search in Google Scholar

Surian, N., Rinaldi, M. 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50, 307-326. DOI: 10.1016/s0169-555x(02)00219-2Search in Google Scholar

Szlávik, L. 2000. Az Alföld árvízi veszélyeztetettsége. In: Pálfai, J (Ed.): A víz szerepe és jelentősége. Nagyalföld Alapítvány, Békéscsaba, 64-84 (in Hungarian).Search in Google Scholar

Vágás, I. 1982. A Tisza árvizei. VÍZDOK, Budapest, 283 p. (in Hungarian)Search in Google Scholar

Van der Berg, J.H. 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259-279. DOI: 10.1016/01695-55x9(50)0014v-Search in Google Scholar

Wyżga, B. 2007. 20 A review on channel incision in Polish Carpathian Rivers during the 20th century. Developments in Earth Surface Processes 11, 525-553.DOI: 10.1016/s0928-2025(07)11142-1Search in Google Scholar

Xu, J. 2002. River sedimentation and channel adjustment of the lower Yellow River as influenced by low discharges and seasonal channel dry-ups. Geomorphology 43, 151-164. DOI: 10.1016/s0169-555x(01)00131-3Search in Google Scholar

Yang, S.L., Milliman, J.D., Xu, K.H., Deng, B., Zhang, X.Y., Luo, X.X. 2014. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Science Reviews 138, 469-486. DOI: 10.1016/j.earscirev.2014.07.006Search in Google Scholar

Yates, R., Waldron, B., van Arsdale, R. 2003. Urban effects on flood plain natural hazards: Wolf River, Tennessee, USA. Engineering Geology 70, 1-15. DOI: 10.1016/s0013-7952(03)00088-7Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo