[[1] Cheng P. and Minkowycz W.J. (1977): Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike.– J. Geophys. Res., vol.82, pp.2040–2044.10.1029/JB082i014p02040]Search in Google Scholar
[[2] Nakayama A. and Koyama H. (1987): A general similarity transformation for combined free and forced convection flows within a fluid saturated porous medium. – ASME J. Heat Transf., vol.109, pp.1041–1045.10.1115/1.3248180]Search in Google Scholar
[[3] Lai F.C. and Kulacki F.A. (1991): Non-Darcy mixed convection along a vertical wall in a saturated porous medium. – ASME J. Heat Transf., vol.113, pp.252–254.10.1115/1.2910537]Search in Google Scholar
[[4] Bakier A.Y., Mansour M.A., Gorla R.S.R. and Ebiana A.B. (1997): Nonsimilar solutions for free convection from a vertical plate in porous media. – Heat Mass Transf., vol.33, pp.145–148.10.1007/s002310050171]Search in Google Scholar
[[5] Nield D.A. and Bejan A. (2006): Convection in Porous Media, Third Ed., Springer. New York:]Search in Google Scholar
[[6] Ingham D.B. and Pop I. (2005): Transport Phenomena in Porous Media. – vol. III, Elsevier, Oxford. U. K.]Search in Google Scholar
[[7] Vafai K. (2005): Handbook of Porous Media. – Second Ed., Taylor & Francis, New York.10.1201/9780415876384]Search in Google Scholar
[[8] Pop I. and Ingham D.B. (2001): Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media., Pergamon. Oxford, U. K.]Search in Google Scholar
[[9] Ingham D.B., Bejan A., Mamut E. and Pop I. (2004): Emerging Technologies and Techniques in Porous Media., Kluwer, Dordrecht, Netherlands.10.1007/978-94-007-0971-3]Search in Google Scholar
[[10] Bejan A., Dincer I., Lorente S., Miguel A.F. and Reis A.H. (2004): Porous and Complex Flow Structures in Modern Technologies, Springer, New York.10.1007/978-1-4757-4221-3]Search in Google Scholar
[[11] Merkin J.H. (1994): Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. – Int. J. Heat Fluid Flow, vol.15, pp.392–398.10.1016/0142-727X(94)90053-1]Search in Google Scholar
[[12] Lesnic D., Ingham D.B., and Pop I. (1999): Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating.– Int. J. Heat Mass Transf., vol.42, pp.2621–2627.10.1016/S0017-9310(98)00251-8]Search in Google Scholar
[[13] Lesnic D., Ingham D.B. and Pop I. (2000): Free convection from a horizontal surface in a porous medium with Newtonian heating. – J. Porous Med., vol.3, pp.227–235.10.1615/JPorMedia.v3.i3.40]Search in Google Scholar
[[14] Lesnic D., Ingham D.B., Pop I. and Storr C. (2004): Free convection boundary-layer flow above a nearly horizontal surface in a porous medium with Newtonian heating.– Heat Mass Transf., vol.40, pp.665–672.10.1007/s00231-003-0435-y]Search in Google Scholar
[[15] Salleh M.Z., Nazar R. and Pop I. (2009): Forced convection boundary layer flow at a forward stagnation point with Newtonian heating. – Chem. Eng. Comm., vol.196, pp.987–996.10.1080/00986440902797840]Search in Google Scholar
[[16] Salleh M.Z., Nazar R. and Pop I. (2010): Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. – J. Taiwan Inst. Chem. Engineers, vol.41, pp.651–655.10.1016/j.jtice.2010.01.013]Search in Google Scholar
[[17] Chaudhary R.C. and Jain P. (2006): Unsteady free convection boundary-layer flow past an impulsively started vertical plate with Newtonian heating. – Rom. J. Phys., vol.51, pp.911–925.]Search in Google Scholar
[[18] Mebine P. and Adigio E.M. (2009): Unsteady free convection flow with thermal radiation past a vertical porous plate with Newtonian heating. – Turk. J. Phys., vol.33, pp.109–119.10.3906/fiz-0809-2]Search in Google Scholar
[[19] Narahari M. and Ishak A. (2011): Radiation effects on free convection flow near a moving vertical plate with Newtonian heating. – J. Appl. Sci., vol.11, pp.1096–1104.10.3923/jas.2011.1096.1104]Search in Google Scholar
[[20] Narahari M. and Nayan M.Y. (2011): Free convection flow past an impulsively started infinite vertical plate with Newtonian heating in the presence of thermal radiation and mass diffusion.– Turk. J. Eng. Env. Sci., vol.35, pp.187–198.]Search in Google Scholar
[[21] Olanrewaju A.M. and Makinde O.D. (2013): On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating.– Chem. Eng. Comm., vol.200, pp.836–852.10.1080/00986445.2012.721825]Search in Google Scholar
[[22] Steg L. and Sutton G.W. (1960): Prospects of MHD Power Generation. – Astronautics, Vol.5, pp.22–25.]Search in Google Scholar
[[23] Womac G.J. (1969): MHD Power Generation. – London: Chapman and Hall.]Search in Google Scholar
[[24] Shercliff J.A. (1962): The Theory of Electromagnetic Flow–Measurement. – Cambridge: CUP.]Search in Google Scholar
[[25] Blake L.R. (1957): Conduction and induction pumps for liquid metals. – Proc. Inst. Elec. Engrs. London, vol.104A, pp.49–62.10.1049/pi-a.1957.0021]Search in Google Scholar
[[26] Marston C.H. (1966): MHD accelerator performance for specified interaction parameter. – AIAA Journal, vol.4, No.11, pp.2078–2079. doi: 10.2514/3.385810.2514/3.3858]Search in Google Scholar
[[27] Christofilos N.C. (1958): Astron Thermonuclear Reactor. – Proc 2nd UN Int. Conf. Peaceful Uses of Atomic Energy, Geneva, vol.32, pp.279–290.]Search in Google Scholar
[[28] Raptis A.A. (1986): Flow through a porous medium in the presence of a magnetic field. – Int. J. Energy Res., vol.10, pp.97–100.10.1002/er.4440100112]Search in Google Scholar
[[29] Jha B.K. (1991): MHD free convection and mass-transform flow through a porous medium. – Astrophys. Space Sci., vol.175, pp.283–289.10.1007/BF00644290]Search in Google Scholar
[[30] Chamkha A.J. (1997): Transient MHD free convection from a porous medium supported by a surface. – Fluid/Particle Separation Journal, vol.10, pp.101–107.]Search in Google Scholar
[[31] Kim Y.J. (2000): Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. – Int. J. Eng. Sci., vol.38, pp.833–845.10.1016/S0020-7225(99)00063-4]Search in Google Scholar
[[32] Ibrahim F.S., Hassanien I.A. and Bakr A.A. (2004): Unsteady magnetohydrodynamic micro-polar fluid flow and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass diffusion with a constant heat source. – Canad. J. Phys., vol.82, pp.775–790.10.1139/p04-021]Search in Google Scholar
[[33] Chamkha A.J. (2004): Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. – Int. J. Eng. Sci., vol.42, pp.217–230.10.1016/S0020-7225(03)00285-4]Search in Google Scholar
[[34] Seth G.S., Ansari Md.S. and Nandkeolyar R. (2011): MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature. – Heat Mass Transf., vol.47, pp.551–561.10.1007/s00231-010-0740-1]Search in Google Scholar
[[35] Mahmoud M.A.A. (2009): Thermal radiation effect on unsteady MHD free convection flow past a vertical plate with temperature dependent viscosity. – Canad. J. Chem. Eng., vol.87, pp.47–52.10.1002/cjce.20135]Search in Google Scholar
[[36] Ogulu A. and Makinde O.D. (2008): Unsteady hydromagnetic free convection flow of a dissipative and radiating fluid past a vertical plate with constant heat flux. – Chem. Eng. Comm., vol.196, pp.454–462.10.1080/00986440802484531]Search in Google Scholar
[[37] Chamkha A.J., Mohamed R.A. and Ahmed S.E. (2011): Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. – Meccanica, vol.46, pp.399–411.10.1007/s11012-010-9321-0]Search in Google Scholar
[[38] Mohamed R.A., Osman A.N.A. and Abo-Dahab S.M. (2013): Unsteady MHD double-diffusive convection boundary-layer flow past a radiate hot vertical surface in porous media in the presence of chemical reaction and heat sink. – Meccanica, vol.48, pp.931–942.10.1007/s11012-012-9644-0]Search in Google Scholar
[[39] Singh G. and Makinde O.D. (2012): Computational dynamics of MHD free convection flow along an inclined plate with Newtonian heating in the presence of volumetric heat generation. – Chem. Eng. Comm., vol.199, pp.1144–1154.10.1080/00986445.2011.651184]Search in Google Scholar
[[40] Abid H., Ismail Z., Khan I., Hussein A.G. and Shafie S. (2014): Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. – Eur. Phys. J. Plus, vol.129, p.46.]Search in Google Scholar
[[41] Sherman A. and Sutton G.W. (2006): Engineering Magnetohydrodynamics. – New York: Dover Pub Inc.]Search in Google Scholar
[[42] Fife J. (1998): Hybrid-PIC Modeling and electrostatic probe survey of Hall thrusters. – PhD Thesis, Department of Aeronautics and Astronautics, MIT, USA.]Search in Google Scholar
[[43] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J. and Hayes J. (2005): Mechanisms of plasma actuators for hypersonic flow control. – Prog. Aerosp. Sci., vol.41, pp 642–668.]Search in Google Scholar
[[44] Kholshchevnikova E.K. (1966): Influence of the Hall effect on the characteristics of a MHD generator with two pairs of electrodes. – J. Appl. Mech. Tech. Phys., vol.7, No.4, pp.48–54.]Search in Google Scholar
[[45] Michaeli K., Tikhonov K. S. and Finkel’stein A.M. (2012): Hall effect in superconducting films. – Physical Review, B 86 014515.10.1103/PhysRevB.86.014515]Search in Google Scholar
[[46] Davidson P.A. (1999): Magnetohydrodynamics in materials processing.– Annual Review Fluid Mech. vol.31, pp.273–300.10.1146/annurev.fluid.31.1.273]Search in Google Scholar
[[47] Hardianto T., Sakamoto N. and Harada N. (2008): Computational study of diagonal channel magnetohydrodynamic power generation. – Int. J. Energy Technol. Policy, vol.6, pp.96–111.10.1504/IJETP.2008.017031]Search in Google Scholar
[[48] Mathon Ph., Nouri A., Alemany A., Chopart J.P., Sobolik V. and Baaziz D. (2009): Electro-chemical processes controlled by high magnetic fields: application to MHD sea water propulsion.– Magnetohydrodynamics, vol.45, pp.281–288.]Search in Google Scholar
[[49] Van Wie D.M. (2005): Future Technologies – Application of Plasma Devices for Vehicle Systems. – The Johns Hopkins University, Applied Physics Laboratory – Laurel, Maryland, USA – NATO Document.]Search in Google Scholar
[[50] Morley N.B., Malang S. and Kirillov I. (2005): Thermofluid Magnetohydrodynamic issues for liquid breeders.– Fusion Sci. Tech., vol.47, pp.488–501.10.13182/FST05-A733]Search in Google Scholar
[[51] Pop I. and Watanabe T. (1994): Hall effect on magnetohydrodynamic free convection about a semi-infinite vertical flat plate. – Int. J. Eng. Sci., vol.32, pp.1903–1911.10.1016/0020-7225(94)90087-6]Search in Google Scholar
[[52] Abo-Eldahab E.M. and Elbarbary E.M.E. (2001): Hall current effect on magnetohydrodynamic free-convection flow past a semi-infinite vertical plate with mass transfer. – Int. J. Eng. Sci. vol.39, pp.1641–1652.10.1016/S0020-7225(01)00020-9]Search in Google Scholar
[[53] Takhar H.S., Roy S. and Nath G. (2003): Unsteady free convection flow over an infinite vertical porous plate due to the combined effects of thermal and mass diffusion, magnetic field and Hall currents. – Heat Mass Transf., vol.39, pp.825–834.10.1007/s00231-003-0427-y]Search in Google Scholar
[[54] Saha L.K., Siddiqa S. and Hossain M.A. (2011): Effect of Hall current on MHD natural convection flow from vertical permeable flat plate with uniform surface heat flux. – Appl. Math. Mech., vol.32, pp.1127–1146.10.1007/s10483-011-1487-9]Search in Google Scholar
[[55] Seth G.S., Mahato G.K. and Sarkar S. (2013): Effects of Hall current and rotation on MHD natural convection flow past an impulsively moving vertical plate with ramped temperature in the presence of thermal diffusion with heat absorption. – Int. J. Energy Tech., vol.5, No.16, pp.1–12.]Search in Google Scholar
[[56] Cramer K.R. and Pai S.I. (1973): Magnetofluiddynamics for Engineers and Applied Physicists. – New York: McGraw Hill Book Company.10.1002/eej.4390930120]Search in Google Scholar
[[57] Abid H., Khan I. and Shafie S. (2013): An exact analysis of heat and mass transfer past a vertical plate with Newtonian heating. – J Appl. Math., vol.2013, Article ID 434571, pp.1-9.]Search in Google Scholar
[[58] de Hoog F.R., Knight J.H. and Stokes A.N. (1982): An improved method for numerical inversion of Laplace transforms. – S.I.A.M. J. Sci. and Stat. Comput., vol.3, pp.357-366.10.1137/0903022]Search in Google Scholar
[[59] Hollenbeck K.J. (1998): Invlap. M: A matlab function for numerical inversion of Laplace transforms by the de Hoog algorithm. – http://www.isva.dtu.dk/staff/karl/invlap.htm.]Search in Google Scholar
[[60] Carnahan B., Luther H.A. and Wilkes J.O. (1969): Applied Numerical Methods. John Wiley and Sons, New York]Search in Google Scholar
[[61] Antia H.M. (1991): Numerical Methods for Scientists and Engineers. – Tata McGraw-Hill Publishing Co Ltd, New Delhi, India.]Search in Google Scholar