1. bookVolume 62 (2016): Issue 3 (September 2016)
Journal Details
License
Format
Journal
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Medicinal properties of fungi occurring on Betula sp. trees. A review

Published Online: 08 Oct 2016
Page range: 63 - 76
Journal Details
License
Format
Journal
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English

The article presents the chemical costituents and pharmacological properties of polyporoid fungi found on birch, namely Piptoporus betulinus, Inonotus obliquus, Lenzites betulina, Fomes fomentarius, and Trametes versicolor. The in vitro and in vivo studies on the effect of different extracts from above-mentioned fungi on the human organism shown anti-cancer, anti-inflammatory, antiviral, antibacterial and immunostimulant activity, conditioned by the presence of such compounds as polysaccharides, polyphenols or terpenes. These fungi are commonly found in Poland and may superbly compete with Ganoderma lucidum (Reishi) or Lentinula edodes (Shitake) used in Asia for medicinal purposes.

Keywords

1. Łakomy P, Kwaśna P. Atlas Hub. Warszawa. Multico Oficyna Wydawnicza, 2008.Search in Google Scholar

2. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Microbiol Biotechnol 2002; 60:258–274.Search in Google Scholar

3. Kardošová A, Babor K, Rosík J, Kubala Ĵ. Polysaccharides of wood-destroying fungus Fontes fomentarius (L.) Fr. extracted with water. Chem zvesti 1969; 23:454-461.Search in Google Scholar

4. Chen W, Zhao Z, Li Y. Simultaneous increase of mycelial biomass and intracellular polysaccharide from Fomes fomentarius and its biological function of gastric cancer intervention. Carbohyd Polym 2011; 85:369-375. doi: http://dx.doi.org/10.1016/j.carbpol.2011.02.035Search in Google Scholar

5. Kim SH, Jakhar R, Kang S.C. Apoptotic properties of polysaccharide isolated from fruiting bodies of medicinal mushroom Fomes fomentarius in human lung carcinoma cell line. Saudi J Biol Sci 2015; 22(4):484-90. doi: http://dx.doi.org/10.1016/j.sjbs.2014.11.022Search in Google Scholar

6. Grienke U, Zöll M, Peintner U, Rollinger JM. European medicinal polypores – A modern view on traditional uses. J Ethnopharmacol 2014; 154:564-583. doi: http://dx.doi.org/10.1016/j.jep.2014.04.030Search in Google Scholar

7. Ramberg JE, Nelson ED, Sinnott RA. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 2010; 9:54. doi: http://dx.doi.org/10.1186/1475-2891-9-54Search in Google Scholar

8. Yang QY, Wu S. Polysaccharide Peptide of Coriolus versicolor, 1998, http://www.psp-research.com.Search in Google Scholar

9. Kuriyama I, Nakajima Y, Nishida H, Konishi T, Takeuchi T, Sugawara F et al. Inhibitory effects of low molecular weight polyphenolics from Inonotus obliquus on human DNA topoisomerase activity and cancer cell proliferation. Mol Med Rep 2013; 8:535-542. doi: http://dx.doi.org/10.3892/mmr.2013.1547Search in Google Scholar

10. Nomura M, Takahashi T, Uesugi A, Tanaka R, Kobayashi S. Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res 2008; 28:2691-2696.Search in Google Scholar

11. Nakata T, Taji S, Yamada T, Tanaka R. New lanostane triterpenoids, inonotsutriols d, and E from Inonotus obliquus. Bulletin of Osaka University of Pharmaceutical Sciences 2009; 3.Search in Google Scholar

12. Youn MJ, Kim JK, Park SY, Kim Y, Kim SJ, Lee JS et al. Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroentero 2008; 14(4):511-517. doi: http://dx.doi.org/10.3748/wjg.14.511Search in Google Scholar

13. Song FQ, Liu Y, Kong XS, Chang W, Song G. Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pac J Cancer P 2013; 14(3):1571-1578.Search in Google Scholar

14. Zhang Y, Xiao Y, Wang P, Liu Q. Compositions and anti-tumor activity of Pyropolyporus fomentarius petroleum ether fraction in vitro and in vivo. PLoS ONE 2014; 9(10):e109599. doi: http://dx.doi.org/10.1371/journal.pone.0109599.Search in Google Scholar

15. Ling H, Zhou L, Jia X, Gapter LA, Agarwal R, Ng K. Polyporenic Acid C induces caspase-8-mediated apoptosis in human lung cancer a549 cells. Mol Carcinogen 2009; 48:498–507. doi: http://dx.doi.org/10.1002/mc.20487Search in Google Scholar

16. Park YM, Kim IT, Park HJ, Choi JW, Park KY, Lee JD et al. Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biol Pharm Bull 2004; 27(10):1588-1593. doi: http://dx.doi.org/10.1248/bpb.27.1588Search in Google Scholar

17. Wangun HVK, Berg A, Hertel W, Nkengfack AE, Hertweck Ch. Anti-inflammatory and anti-hyaluronate lyase activities of lanostanoids from Piptoporus betulinus. J Antibiot 2004; 57(11):755-758. doi: http://dx.doi.org/10.7164/antibiotics.57.755Search in Google Scholar

18. Schlegel B, Luhmann U, Hartl A, Grafe U. Piptamine, a new antibiotic produced by Piptoporus betulinus Lu 9-1. J Antibiot 2000; 53(9):973-974.Search in Google Scholar

19. Standish LJ, Wenner CA, Sweet ES, Bridge C, Nelson A, Martzen M et al. Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol 2008; 6(3):122–128.Search in Google Scholar

20. Hybelbauerová S, Sejbal J, Dračínský M, Hahnová A, Koutek B. Chemical constituents of Stereum subtomentosum and two other birch-associated Basidiomycetes: an interspecies comparative study. Chem Biodivers 2008; 5(5):743–750. doi: http://dx.doi.org/10.1002/cbdv.200890070Search in Google Scholar

21. Reis FS, Pereira E, Barros L, Sousa MJ, Martins A, Ferreira IC. Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules 2011; 16:4328-4338. doi: http://dx.doi.org/10.3390/molecules16064328Search in Google Scholar

22. Wiater A, Paduch R, Pleszczyńska M, Próchniak K, Choma A, Kandefer-Szerszeń M et al. α-(1→3)-D-Glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnol Lett 2011; 33:787-795. doi: http://dx.doi.org/10.1007/s10529-010-0502-7Search in Google Scholar

23. Yusoo S, Yutaka T and Minoru T. Chemical constituents of Inonotus obliquus IV. - triterpene and steroids from cultured mycelia. Eurasian J For Res 2001; 2:27-30.Search in Google Scholar

24. Kahlos K, Kangas L, Hiltunen R. Ergosterol peroxide, an active compound from Inonotus radiatus. Planta Med 1989; 55:389-90.Search in Google Scholar

25. Liu C, Zhao C, Pan HH, Kang J, Yu XT, Wang HQ et al. Chemical constituents from Inonotus obliquus and their biological activities. J Nat Prod 2014; 77:35-41.Search in Google Scholar

26. Knox RJ, Lydall DA, Friedlos F, Basham C, Rawlings CJ, Roberts JJ. The Walker 256 carcinoma: a cell type inherently sensitive only to those difunctional agents that can form DNA interstrand crosslinks. Mutation Research/DNA Repair, 1991; 255(3):227-240. doi: http://dx.doi.org/10.1016/0921-8777(91)90026-LSearch in Google Scholar

27. Levenson AS, Jordan VC. MCF-7: The first hormone-responsive breast cancer cell line. Cancer Res 1997; 57:3071-3078.Search in Google Scholar

28. Petrova RD, Reznick AZ, Wasser SP, Denchev CM, Nevo E, Mahajna J. Fungal metabolites modulating NF-κB activity: An approach to cancer therapy and chemoprevention (Review). Oncol Rep 2008; 19:299-308.Search in Google Scholar

29. Shibnev VA, Mishin DV, Garaev TM, Finogenova NP, Botikov AG, Deryabin PG. Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. B Exp Biol Med+ 2011; 151(5):612-4. doi: http://dx.doi.org/10.1007/s10517-011-1395-8Search in Google Scholar

30. Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF et al. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol 2008; 118:7-13. doi: http://dx.doi.org/10.1016/j.jep.2008.02.030Search in Google Scholar

31. Lee JH, Hyun CK. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus. Phytother Res 2014; 28:1320-1328. doi: http://dx.doi.org/10.1002/ptr.5131Search in Google Scholar

32. Olennikov DN, Agafonova SV, Penzina TA, Borovskii GB. Fatty acid composition of fourteen wood-decaying Basidiomycete species growing in permafrost conditions. Rec Nat Prod 2014; 8(2):184-188.Search in Google Scholar

33. Lee IK, Yun BS, Cho SM, Kim WG, Kim JP, Ryoo IJ. Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J Nat Prod 1996; 59:1090-1092. doi: http://dx.doi.org/10.1021/np960253zSearch in Google Scholar

34. El-Elimat T, Figueroa M, Raja HA, Graf TN, Adcock AF, Kroll DJ, et al. Benzoquinones and terphenyl compounds as phosphodiesterase-4b inhibitors from a fungus of the order chaetothyriales (MSX 47445). J Nat Prod 2013; 76:382-387. doi: http://dx.doi.org/10.1021/np300749wSearch in Google Scholar

35. Liu K, Wang JL, Gong WZ, Xiao X, Wang Q. Antioxidant activities in vitro of ethanol extract and fractions from mushroom, Lenzites betulina. J Food Biochem 2013; 37:687-693. doi: http://dx.doi.org/10.1111/j.1745-4514.2012.00666.xSearch in Google Scholar

36. Gan X, Jiang W, Wang W, Hu L. An Approach to 3,6-disubstituted 2,5-dioxybenzoquinones via two sequential Suzuki Couplings. Three-step synthesis of leucomelone. Org Lett 2009; 11:589-592. doi: http://dx.doi.org/10.1021/ol802645fSearch in Google Scholar

37. Zjawiony JK. Biologically active compounds from Aphyllophorales (Polypore) fungi. J Nat Prod 2004; 67(2):300-310. doi: http://dx.doi.org/10.1021/np030372wSearch in Google Scholar

38. Kun L, Jun-Li W, Hai-Bo W, Qian W, Kai-Li B, Yun-Fei S. A New pyranone from Lenzites betulina. Chem Nat Compd 2012; 48(5):780-781. doi: http://dx.doi.org/10.1007/s10600-012-0380-4Search in Google Scholar

39. Hussin FRM, Vitor RJS, Joaquin JAO, Clerigo MM, Paano AMC. Anti-hyperglycemic effects of aqueous Lenzites betulina extracts from the Philippines on the blood glucose levels of the ICR mice (Mus musculus). Asian Pac J Trop Biomed 2016; 6(2):155–158. doi: http://dx.doi.org/10.1016/j.apjtb.2015.04.013Search in Google Scholar

40. Fakoya S, Oloketuyi SF. Antimicrobial efficacy and phytochemical screening of mushrooms, Lenzites betulinus, and Coriolopsis gallica extracts. TAF Prev Med Bull 2012; 11(6): 695-8. doi: http://dx.doi.org/10.5455/pmb.1-1327262044Search in Google Scholar

41. Oyetayo OV. Free radical scavenging and antimicrobial properties of extracts of wild mushrooms. Braz J Microbiol 2009; 40:380-386, doi: http://dx.doi.org/10.1590/S1517-838220090002000031Search in Google Scholar

42. Oyetayo OV, Nieto-Camacho A, Ramírez-Apana TM, Baldomero RE, Jimenez M. Total phenol, antioxidant and cytotoxic properties of wild macrofungi collected from Akure Southwest Nigeria. Jordan J Biol Sci 2013; 6(2):105-110, doi: http://dx.doi.org/10.12816/0000267Search in Google Scholar

43. Sundaramoorthi C, Jayaraman R, Vipul JR, Dhariya KK. Evaluation of hepatoprotective effect of Lenzitus betulina against paracetamol induced hepatic damage in rats. Jour Harm Res Pharm 2015; 4(4):296-304.Search in Google Scholar

44. Snowarski M. Atlas grzybów Polski 2013; www.grzyby.pl (date of entry: 04. 2015).Search in Google Scholar

45. Zang Y, Xiong J, Zhai W, Cao L, Zhang S, Tang Y et al. Fomentarols A–D, sterols from the polypore macrofungus Fomes fomentarius. Phytochemistry 2013; 92:137-145. doi: http://dx.doi.org/10.1016/j.phytochem.2013.05.003Search in Google Scholar

46. Aoki M, Tan M, Fukushima A, Hieda T, Kubo S, Takabayashi M et al. Antiviral substances with systemic effects produced by Basidiomycetes such as Fomes fomentarius. Biosci Biotech Bioch 1993; 57(2):278-282. doi: http://dx.doi.org/10.1271/bbb.57.278Search in Google Scholar

47. Krupodorova T, Rybalko S, Barshteyn V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virologica Sinica, 2014; 29(5):284-290. doi: http://dx.doi.org/10.1007/s12250-014-3486-ySearch in Google Scholar

48. Seniuk OF, Gorovoj LF, Beketova GV, Savichuk HO, Rytik PG, Kucherov II et al. Anti-infective properties of the melanin-glucan complex obtained from medicinal tinder bracket mushroom, Fomes fomentarius (L.) Fr. (Aphyllophoromycetideae). Int J Med Mushrooms 2011; 13(1):7-18.Search in Google Scholar

49. Valisolalao J, Luu B. Ourisson, G. Steroides cytotoxiques de Polyporus versicolor. Tetrahedron 1983; 39:2779-2785. doi: http://dx.doi.org/10.1016/S0040-4020(01)82446-7Search in Google Scholar

50. Kuan YC, Wu YJ, Hung CL, Sheu F. Trametes versicolor protein YZP activates regulatory b lymphocytes – gene identification through de novo assembly and function analysis in a murine acute colitis model. PLoS ONE 2013; 8(9): e72422. doi: http://dx.doi.org/10.1371/journal.pone.0072422Search in Google Scholar

51. Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J et al. Phase 1 clinical trial of Trametes versicolor in women with breast cancer. International Scholarly Research Network ISRN Oncology 2012; 251632, 7 pages. doi: http://dx.doi.org/10.5402/2012/251632Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo