1. bookVolume 17 (2017): Issue 3 (September 2017)
Journal Details
License
Format
Journal
First Published
19 Oct 2012
Publication timeframe
4 times per year
Languages
English
Open Access

Development Of Multistitched Three-Dimensional (3D) Nanocomposite And Evaluation Of Its Mechanical And Impact Properties

Published Online: 02 Sep 2017
Volume & Issue: Volume 17 (2017) - Issue 3 (September 2017)
Page range: 238 - 249
Journal Details
License
Format
Journal
First Published
19 Oct 2012
Publication timeframe
4 times per year
Languages
English

[1] Dow, M. B., Dexter, H. B. (1997). Development of Stitched, Braided and Woven Composite Structures in the ACT Program at Langley Research Centre (1985 to 1997). National Aeronautics and Space Administration Technical Publication No. 97-206234, Langley Research Center, Hampton, Virginia.Search in Google Scholar

[2] Kamiya, R., Cheeseman, B. A., Popper, P., Chou, T. W. (2000). Some recent advances in the fabrication and design of three dimensional textile preforms: A review. Composite Science and Technology, 60(1), 33-47.10.1016/S0266-3538(99)00093-7Search in Google Scholar

[3] Bilisik, K., Yilmaz, B. (2012). Multiaxis multilayered noninterlaced/ non-z E-glass/polyester preform and analysis of tensile properties of composite structures by statistical model, Textile Research Journal, 82(4), 336-351.10.1177/0040517511420762Search in Google Scholar

[4] Kang, T. J., Lee, S. H. (1994). Effect of stitching on the mechanical and impact properties of woven laminate composite, Journal of Composite Materials, 28(16), 1574-1587.10.1177/002199839402801604Search in Google Scholar

[5] Wu, E., Wang, J. (1995). Behavior of stitched laminates under in-plane tensile and transverse impact loading, Journal of Composite Materials, 29(17), 2254-2279.10.1177/002199839502901702Search in Google Scholar

[6] Dickinson, L. C., Farley, G. L., Hinders, M. K. (1999). Prediction of effective three-dimensional elastic constants of translaminar reinforced composites, Journal of Composite Materials, 33(11), 1002-1029.10.1177/002199839903301104Search in Google Scholar

[7] Tan, K. T., Watanabe, N., Iwahori, Y. (2012). Impact damage resistance, response and mechanisms of laminated composites reinforced by through-thickness stitching, International Journal of Damage Mechanics, vol. 21(1), 51-80.Search in Google Scholar

[8] Bilisik, K. (2010). Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites, Journal of Reinforced Plastics and Composites, 29(8), 1173-1186.10.1177/0731684409103153Search in Google Scholar

[9] Mohamed, M. H., Bilisik, A. (1995). Multilayered 3D fabric and method for producing, US Patent 5465760.Search in Google Scholar

[10] Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., Quaresimin, M., Fiedler, B., Schulte, K. (2006). Glass-fibre-reinforced composites with enhanced mechanical and electrical properties - Benefits and limitations of a nanoparticle modified matrix, Engineering Fracture Mechanics, 73(16), 2346-2351.10.1016/j.engfracmech.2006.05.015Search in Google Scholar

[11] Greef, N.D., Gorbatikh, L., Lomov, S.V., Verpoest, I. (2011). Damage development in woven carbon fiber/epoxy composites modified with carbon nanotubes under tension in the bias direction, Composites Part A: Applied Science and Manufacturing, 42(11), 1635-1645.10.1016/j.compositesa.2011.07.013Search in Google Scholar

[12] Thostenson, E.T., Li, C., Chou, T.W. (2005). Nanocomposites in context, Composites Science and Technology, vol. 65(3-4), 491-516.Search in Google Scholar

[13] Wang, H.W., Zhou, H.W., Peng, R.D., Mishnaevsky, L. (2011). Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Composites Science and Technology, 71(7), 980-990.10.1016/j.compscitech.2011.03.003Search in Google Scholar

[14] Yong, V., Hahn, H.T. (2004). Processing and properties of SiC/vinyl ester nanocomposites, Nanotechnolgy, 15(9), 1338-1343.10.1088/0957-4484/15/9/038Search in Google Scholar

[15] Patnaik, A., Satapathy, A., Mahapatra, S.S., Dash, R.R. (2009). A Comparative Study on Different Ceramic Fillers Affecting Mechanical Properties of Glass- Polyester Composites, Journal of Reinforced Plastics and Composites, 28(11), 1305-1318.10.1177/0731684407086589Search in Google Scholar

[16] Davis, D. C., Wilkerson, J. W., Zhu, J., Hadjiev, V.G. (2011). A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes, Composites Science and Technology, 71(8), 1089-1095.10.1016/j.compscitech.2011.03.014Search in Google Scholar

[17] Zhu, J., Imam, A., Crane, R., Lozano, K., Khabashesku, V.N., Barrera, E.V. (2007). Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength, Composites Science and Technology, vol. 67(7-8), 1509-1515.Search in Google Scholar

[18] Seyhan, A.T., Gojny, F.H., Tanoglu, M., Schulte, K. (2007). Critical aspects related to processing of carbon nanotube/ unsaturated thermoset polyester nanocomposites, European Polymer Journal, 43(2), 374-383.10.1016/j.eurpolymj.2006.11.018Search in Google Scholar

[19] Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study, Composites Science and Technology, vol. 65(15-16), 2300-2308.Search in Google Scholar

[20] Velmurugan, R., Solaimurugan, S. (2007). Improvements in Mode I Interlaminar Fracture Toughness and In-Plane Mechanical Properties of Stitched Glass/Polyester Composites, Composites Science and Technology, vol. 67(1), 61-69.Search in Google Scholar

[21] Mouritz, A.P., Gallagher, J., Goodwin, A.A. (1997). Flexural and Interlaminar Shear Strength of Stitched GRP Laminates Following Repeated Impacts, Composites Science and Technology, 57(5), 509-522.10.1016/S0266-3538(96)00164-9Search in Google Scholar

[22] Mouritz, A.P. (1996). Flexural Properties of Stitched GRP Laminates, Composites, 27A, 525-530.10.1016/1359-835X(96)00010-3Search in Google Scholar

[23] Zhao, N., Rodel, H., Herzberg, C., Gao, S.L. and Krzywinsky, S. (2009). Stitched Glass/PP Composite Part I: Tensile and Impact Properties, Composites Part A: Applied Science and Manufacturing, 40(5), 635-643.10.1016/j.compositesa.2009.02.019Search in Google Scholar

[24] Mouritz, A.P. (2001). Ballistic Impact and Explosive Blast Resistance of Stitched Composites, Composites Part B: Engineering, 32(4), 431-439.10.1016/S1359-8368(01)00015-4Search in Google Scholar

[25] Dransfield, K.A., Jain, L.K., Mai, Y.W. (1998). On the Effects of Stitching in CFRPS-I: Mode I Delamination Toughness, Composites Science and Technology, 58(6), 815-827.10.1016/S0266-3538(97)00229-7Search in Google Scholar

[26] Trabelsi, W., Michel, L., Othomene, R. (2010). Effects of Stitching on Delamination of Satin Weave Carbon-Epoxy Laminates under Mode I, Mode II And Mixed-Mode I/II Loadings, Applied Composite Materials, 17(6), 575-595.10.1007/s10443-010-9128-0Search in Google Scholar

[27] Sankar, B.V., Sharma, S.K. (1997). Mode II Delamination Toughness of Stitched Graphite/Epoxy Textile Composites, Composites Science and Technology, 57(7), 729-737.10.1016/S0266-3538(97)00032-8Search in Google Scholar

[28] Sharma, S.K., Sankar, B.V. (1997). Effect of Stitching on Impact and Interlaminar Properties of Graphite/Epoxy Laminates, Journal of Thermoplastic Composite Materials, 10(3), 241-253.10.1177/089270579701000302Search in Google Scholar

[29] Baucom, J.N., Zikry, M.A. (2005). Low-velocity impact damage progression in woven E-glass composite systems, Composites Part A: Applied Science and Manufacturing, 36(5), 658-664.10.1016/j.compositesa.2004.07.008Search in Google Scholar

[30] Antonio, F.A, Marcelo, I.S., Neto, A.S. (2007). A study on nanostructured laminated plates behavior under lowvelocity impact loadings, International Journal of Impact Engineering, 34(1), 28-41.10.1016/j.ijimpeng.2006.06.009Search in Google Scholar

[31] Bilisik, K., Yolacan, G. (2014). Experimental characterization of multistitched two dimensional (2D) woven E-glass/ polyester composites under low velocity impact load, Journal of Composite Materials, 48(17), 2145-2162.10.1177/0021998313494918Search in Google Scholar

[32] ASTM D792-13. (2013). Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[33] ASTM D3171-11. (2014). Standard Test Methods for Constituent Content of Composite Materials, ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[34] ASTM D2734-09. (2014). Standard Test Methods for Void Content of Reinforced Plastics, ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[35] ASTM D3039-76. (2000). Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[36] ASTM D790-03. (2003). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[37] ASTM D2344-00. (2000). Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[38] ASTM D7136/D7136M-15. (2007). Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event, ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[39] Bilisik, K., Yolacan, G. (2015). Warp and Weft Directional Bending Properties of Multistitched Biaxial Woven E-Glass/ Polyester Nano Composites, Journal of Industrial Textiles, 45(1), 66-100.10.1177/1528083714523163Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo