1. bookVolume 65 (2015): Issue 1 (March 2015)
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Proliferation And Differentiation Potential Of Canine Synovial Fluid Cells

Published Online: 20 Mar 2015
Volume & Issue: Volume 65 (2015) - Issue 1 (March 2015)
Page range: 66 - 78
Received: 09 Jul 2014
Accepted: 22 Dec 2014
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of this study was to determine whether synovial fluid (SF) of dogs contains cells that have characteristics of MSCs and to describe their differentiation potential. SF adherent cells from 5 young German shepherd dogs (average 3.8 ± 0.9 years) were expanded (37°C, 5% CO2, humidified atmosphere) three weeks before their phenotype was characterized by flow-cytometry for the presence of CD90 and CD34. Population doubling time (PDT), number of CFU-F and adipogenic, osteogenic and chondrogenic potentials have been determined in vitro. In early passages PTD was 31 ± 10 hours and expansion fold after 3 sub cultivations (9 days) theoretically could be 372 ± 134. At P1, 0.55 ± 0.05% of SF cells had the ability to form CFU-F. Sixty-six percent of cells expressed CD90 and none of the cells expressed markers of hematopoietic cells. Oil Red O staining has shown accumulation of fat droplets in cells grown in adipogenic medium, while deposits of calcium in the osteogenic medium were evidenced with Alizarin red staining. SF cultured in hondrogenic and control medium in three-dimensional conditions formed a cartilage-like tissue. Alcian blue staining of pellets’ slides have shown a significant amount of glycosaminoglycans (GAGs) and immunohistochemistry analysis documented collagen type II expression. The amount of GAGs in pellets grown in both conditions showed no difference. SF cells in vitro exhibited osteogenic, adipogenic and chondrogenic differentiation potentials, suggesting the presence of different mesenchymal progenitors. These results also demonstrated that SF cells have a spontaneous chondrogenic potential that should be further explored for possible tissue engineering protocols.

Keywords

1. Smith MD: The normal synovium. Open Rheumatol J 2011, 5:100-6.10.2174/1874312901105010100326350622279508Search in Google Scholar

2. Hunziker EB, Rosenberg LC: Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996, 78(5):721-33.10.2106/00004623-199605000-000128642029Search in Google Scholar

3. Hunziker EB, Kapfinger E: Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells. J Bone Joint Surg Br 1998, 80(1):144-50.10.1302/0301-620X.80B1.0800144Search in Google Scholar

4. Hatsushika D, Muneta T, Nakamura T, Horie M, Koga H, Nakagawa Y, Tsuji K, Hishikawa S, Kobayashi E, Sekiya I: Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthritis Cartilage 2014, 22(7):941-50.10.1016/j.joca.2014.04.02824795274Search in Google Scholar

5. Horie M, Driscoll MD, Sampson HW, Sekiya I, Caroom CT, Prockop DJ, Thomas DB: Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model. J Bone Joint Surg Am 2012, 94(8):701-12.10.2106/JBJS.K.00176332668622517386Search in Google Scholar

6. Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, Murakami T, Kobayashi E: Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells 2009, 27(4):878-87.10.1634/stemcells.2008-061619350690Search in Google Scholar

7. Furuzawa-Carballeda J, Macip-Rodríguez PM, Cabral AR: Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response. Clin Exp Rheumatol 2008, 26(4):554-60.Search in Google Scholar

8. Karystinou A, Dell'Accio F, Kurth TB, Wackerhage H, Khan IM, Archer CW, Jones EA, Mitsiadis TA, De Bari C: Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology (Oxford) 2009, 48(9):1057-64.10.1093/rheumatology/kep19219605375Search in Google Scholar

9. Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, Sekiya I: Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum 2008;58(2):501-10.10.1002/art.2321918240254Search in Google Scholar

10. Harvanová D1, Tóthová T, Sarišský M, Amrichová J, Rosocha J: Isolation and characterization of synovial mesenchymal stem cells. Folia Biol (Praha) 2011;57(3):119-24.Search in Google Scholar

11. Ando W, Kutcher JJ, Krawetz R, Sen A, Nakamura N, Frank CB, Hart DA: Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage. Cytotherapy 2014, 16(6):776-88.10.1016/j.jcyt.2013.12.00324529553Search in Google Scholar

12. Morito T, Muneta T, Hara K, Ju YJ, Mochizuki T, Makino H, Umezawa A, Sekiya I: Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford) 2008, 47(8):1137-43.10.1093/rheumatology/ken11418390894Search in Google Scholar

13. Berg RI, Sykes JE, Kass PH, Vernau W: Effect of repeated arthrocentesis on cytologic analysis of synovial fluid in dogs. J Vet Intern Med 2009, 23(4):814-7.10.1111/j.1939-1676.2009.0340.x19566847Search in Google Scholar

14. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994, 331(14):889-95.10.1056/NEJM1994100633114018078550Search in Google Scholar

15. Cook JL, Kuroki K, Visco D, Pelletier JP, Schulz L, Lafeber FP: The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the dog. Osteoarthritis Cartilage 2010, 18:S66-79.10.1016/j.joca.2010.04.01720864024Search in Google Scholar

16. Portron S, Merceron C, Gauthier O, Lesoeur J, Sourice S, Masson M, Fellah BH, Geffroy O, Lallemand E, Weiss P, Guicheux J, Vinatier C: Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair. PLoS One 2013, 8(4):e62368.10.1371/journal.pone.0062368364004723638053Search in Google Scholar

17. Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA: Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLoS One 2012,7(8):e43616.10.1371/journal.pone.0043616343069622952721Search in Google Scholar

18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8:315-7.10.1080/1465324060085590516923606Search in Google Scholar

19. Bianco P, Robey P, Saggio I, Riminucci M: Mesenchymal stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Human Gene Therapy, 2010, 21:1057-1066.10.1089/hum.2010.136547155520649485Search in Google Scholar

20. Kovačević Filipović M: The Blood is Rich in Different Types of Mesoderm Derived Stem and Progenitor Cells. Acta veterinaria(Beograd) 2014, 64:156-178.10.2478/acve-2014-0016Search in Google Scholar

21. Neidhart M, Seemayer CA, Hummel KM, Michel BA, Gay RE, Gay S: Functional characterization of adherent synovial fluid cells in rheumatoid arthritis: destructive potential in vitro and in vivo. Arthritis Rheum 2003;48(7):1873-80.10.1002/art.1116612847681Search in Google Scholar

22. Debeljak Martačić J, Francuski J, Lužajić T, Vuković N, Mojsilović S, Drndarević N, Petakov M, Glibetić M, Marković D, Radovanović A, Todorović V, Kovačević Filipović M: Characterization of deciduous teeth stem cells isolated from crown dental pulp. Vojnosanit Pregl 2014, 71:1-10.10.2298/VSP1408735DSearch in Google Scholar

23. Ivanović Z, Bartolozzi B, Bernabei PA, Cipolleschi MG, Milenkovic P, Praloran V, DelloSbarba P: A simple, one-step clonal assay allows the sequential detection of committed (CFU-GM-like) progenitors and several subsets of primitive (HPP-CFC) murine progenitors. Stem Cells 1999,17(4):219-25.10.1002/stem.17021910437985Search in Google Scholar

24. Martinello T, Bronzini I, Maccatrozzo L, Mollo A, Sampaolesi M, Mascarello F, Decaminada M, Patruno M: Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci 2011, 91:18-24.10.1016/j.rvsc.2010.07.02420732703Search in Google Scholar

25. Muraglia A, Cancedda R, Quarto R: Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000, 113 (Pt 7):1161-6.10.1242/jcs.113.7.116110704367Search in Google Scholar

26. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 331:889-95.10.1056/NEJM1994100633114018078550Search in Google Scholar

27. Horňák S, Harvanová D, Ledecký V, Hluchý M, Valenčáková-Agyagosová A, Amrichová J, Rosocha J, Vaško G, Švihla R, Petrovič V: Reparation of chondral defects in rabbits by autologous and allogenous chondrocytes seeded on collagen/hyaluronan scaffold or suspended in fibrin glue. Acta veterinaria (Beograd) 2014, 64:61-72.10.2478/acve-2014-0007Search in Google Scholar

28. Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D, Chapman T, Emery P, Hatton P, McGonagle D: Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheumatology 2008, 58:1731-1740.10.1002/art.2348518512779Search in Google Scholar

29. Ichinose S, Muneta T, Koga H, Segawa Y, Tagami M, Tsuji K, Sekiya I: Morphological differences during in vitro chondrogenesis of bone marrow-, synovium-MSCs, and chondrocytes. Lab Invest 2010, 90:210-221.10.1038/labinvest.2009.12520010853Search in Google Scholar

30. Crawford A, Frazer A, Lippitt JM, Buttle DJ, Smith T: A case of chondromatosis indicates a synovial stem cell aetiology. Rheumatology (Oxford) 2006, 45(12):1529-33.10.1093/rheumatology/kel11116670157Search in Google Scholar

31. Zhou C, Zheng H, Seol D, Yu Y, Martin JA: Gene expression profiles reveal that chondrogenic progenitor cells and synovial cells are closely related. J Orthop Res 2014, 32(8):981-8.10.1002/jor.22641641530824797716Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo